首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic principles governing trajectories of change in muscle length (henceforth referred to as "movement") were analyzed at varying rates of distributed afferent stimulation during experiments on the soleus and plantaris muscles in unanesthetized cats. The theoretical possibility of describing evoked movements within the context of a model having nonlinear hysteresis properties and dependence of dynamic parameters on direction of movement were demonstrated. A difference in static transitions between muscle contraction and lengthening was found and vice versa and retardation of movement at the start of lengthening reaction (induced by a reduced efferent stimulation rate) was more pronounced. Interaction was discovered between two disruptive influences: changes in the rate of efferent stimulation and external load, mainly due to hysteresis effects of muscle contraction. The trajectory of movement produced by alteration in one of the inputs at work (external load or afferent stimulation) is associated with the lead-up to the muscle motion, irrespective of the reason inducing the foregoing movement. Functional implications of the nonlinear dynamics of muscular contraction are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 443–450, July–August, 1989.  相似文献   

2.
The principle nonlinear characteristics of changes in the length of active (soleus, gastrocnemius, and plantaris) muscle resulting from controlled changes in external load were examined during acute experiments on anesthetized cats. Summation of successive muscle responses to repetitive phased changes in load was shown to be absent due to hysteresis effects; this does not satisfy the principles of superposition and leads to an important functional result: the muscle exerts a stabilizing effect on overall motor system dynamics, limiting unwanted shifts in joint angles during variation in external load. A relationship between the trajectory profile of change in muscle length and the lead-up to the movement arises due to muscle contraction hysteresis. Velocity at the initial stage of movement was always higher when the latter was preceded by motion in the same direction. The functional significance of the nonlinear properties of active muscle movement accompanying changing external load is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 736–743, November–December, 1988.  相似文献   

3.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

4.
The present model of joint angle perception is based on the following hypotheses: the perception and control of joint angle are closely interrelated processes; central motor commands are adequately expressed by shifts of an equilibrium point resulting from the interaction of antagonistic muscles and a load; two fundamental commands-reciprocal (r) and coactivative (c) provide for changes in activity of the antagonistic muscle pair. The dependence of joint angle on static muscle torque and r and c commands is derived (Eq. 5). The following principles of joint position sense are formulated: 1) the r component of the efferent copy plays the role of a reference point which shifts during voluntary regulation of muscle state, but remains unchanged during any passive alterations of joint position; 2) muscle afferent signals deliver not absolute but relative information (i.e. measured relatively to the central reference point). These signals turn out to be related to active muscle torque; 3) the nervous system evaluates muscle afferent signals on the basis of a scale determined by the level of coactivation of the antagonistic muscles. Kinaesthetic illusions appear to be due to disruptions in perception of afferent and/or efferent components of position sense. The present model is consistent with all the variety of kinaesthetic illusions observed experimentally. A qualitative neurophysiological schema for joint angle perception is proposed involving efferent copy and information concerning muscle torque delivered by the tendon organ, muscle spindle, and perhaps, articular receptors. It is known that the cerebellum incorporates both afferent and efferent information concerning movement. One may presume that it plays an essential role in position sense.  相似文献   

5.
Flexing and extending movements of the elbow joint were studied in unanesthetized cats. These movements were evoked by intracortical microstimulation and by vibration of the forepaw. After the animals were anesthetized the same movements were studied in response to direct stimulation of the antagonistic muscles. Interaction of the hysteresis effects in the antagonistic muscles under conditions of cortical-evoked movements in response to stimulation of two points of the cortex, one of which evoked flexion, and the other extension of the elbow joint, was studied using external local disturbance. Coactivation of the antagonists was shown to increase both the joint stiffness and the ambiguity of the equilibrium of the joint angle. This ambiguity was expressed in both the antagonistic actuating disturbances as well as in the change of the sequence for activating the antagonistic muscles. Comparison of the cortical-evoked movements and movements evoked by vibrating the forepaw when tested with an external load disturbance showed that with intracortical microstimulation the myotatic reflexes in the activated muscle are suppressed, but when vibration is used they are well defined in both antagonistic muscles. At the same time, in spite of the significantly different pathways for activating spinal neurons, the ambiguity effects displayed when determining the equilibrium of the joint angle were similar in both cases.A. A. Bogomolets Physiology Institute, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 322–330, May–June, 1991.  相似文献   

6.
Using the same experimental prodedure as we employed in the previous paper [5], extension and flexion cortically-evoked movements (CEM) about the elbow joint have been analyzed in unanesthetized cats by an external load disturbance method (ELD). These movements were evoked by intracortical microstimulation (ICMS) of the motor cortex. A combined quantitative analysis has been made of extension and flexion CEM and also motor reactions evoked by direct stimulation of the muscle antagonists, in unanesthetized animals. Determinations were made of the resulting stiffness at different stages of two sequential oppositely directed cycles of change in the external load, and of the uncertainty index (UI) of the disturbed movements. Depending on the relationship between the directions of the preceding and the disturbed movement, the CEM in the cyclical backwards and forwards external load changes were divided into two types: coincident (type 1), and opposite (type 2). If the preceding movement was evoked by ICMS, then disturbed movements (types 1 and 2) were a realization of phasic myotatic reflexes, the unloading and stretch reflexes, respectively. Type 1 disturbed movements are characterized by a rather narrow range of variation of the mean UI values (0.43–0.91 and 0.24–0.73 for frequencies of disturbance 1.2 and 3.2 Hz, respectively). The transition to type 2 CEM brought about a sharp increase in the scatter of mean UI values; they could be positive or negative, and the dispersion also increased significantly. It is suggested that the intensity of central processes of regulation of a disturbed movement are connected not so much with its continuous development, as with changes in its direction.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 330–339, May–June, 1992.  相似文献   

7.
In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36°. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. “to do the same no matter what the motor did”. In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis,r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.  相似文献   

8.
Biomechanical optimization models that apply efficiency-based objective functions often underestimate or negate antagonist co-activation. Co-activation assists movement control, joint stabilization and limb stiffness and should be carefully incorporated into models. The purposes of this study were to mathematically describe co-activation relationships between elbow flexors and extensors during isometric exertions at varying intensity levels and postures, and secondly, to apply these co-activation relationships as constraints in an optimization muscle force prediction model of the elbow and assess changes in predictions made while including these constraints. Sixteen individuals performed 72 isometric exertions while holding a load in their right hand. Surface EMG was recorded from elbow flexors and extensors. A co-activation index provided a relative measure of flexor contribution to total activation about the elbow. Parsimonious models of co-activation during flexion and extension exertions were developed and added as constraints to a muscle force prediction model to enforce co-activation. Three different PCSA data sets were used. Elbow co-activation was sensitive to changes in posture and load. During flexion exertions the elbow flexors were activated about 75% MVC (this amount varied according to elbow angle, shoulder flexion and abduction angles, and load). During extension exertions the elbow flexors were activated about 11% MVC (this amount varied according to elbow angle, shoulder flexion angle and load). The larger PCSA values appeared to be more representative of the subject pool. Inclusion of these co-activation constraints improved the model predictions, bringing them closer to the empirically measured activation levels.  相似文献   

9.
The influence of external factors such as arm posture, hand loading and dynamic exertion on shoulder muscle activity is needed to provide insight into the relationship between internal and external loading of the shoulder joint. Surface electromyography was collected from 8 upper extremity muscles on 16 participants who performed isometric and dynamic shoulder exertions in three shoulder planes (flexion, mid-abduction and abduction) covering four shoulder elevation angles (30°, 60°, 90° and 120°). Shoulder exertions were performed under three hand load conditions: no load, holding a 0.5 kg load and 30% grip. It was found that adding a 0.5 kg load to the hand increased shoulder muscle activity by 4% maximum voluntary excitation (MVE), across all postures and velocities. Performing a simultaneous shoulder exertion and hand grip led to posture specific redistribution of shoulder muscle activity that was consistent for both isometric and dynamic exertions. When gripping, anterior and middle deltoid activity decreased by 2% MVE, while posterior deltoid, infraspinatus and trapezius activity increased by 2% MVE and biceps brachii activity increased by 6% MVE. Increased biceps brachii activity with gripping may be an initiating factor for the changes in shoulder muscle activity. The finding that hand gripping altered muscle activation, and thus the internal loading, of the shoulder may play an important role in shoulder injury development and rehabilitation.  相似文献   

10.
The aim of the study was to investigate the influence of a preceding flexion or extension movement on the static interaction of human finger flexor tendons and pulleys concerning flexion torque being generated. Six human fresh frozen cadaver long fingers were mounted in an isokinetic movement device for the proximal interphalangeal (PIP) joint. During flexion and extension movement both flexor tendons were equally loaded with 40 N while the generated moment was depicted simultaneously at the fingertip. The movement was stopped at various positions of the proximal interphalangeal joint to record dynamic and static torque. The static torque was always greater after a preceding extension movement compared to a preceding flexion movement in the corresponding same position of the joint. This applied for the whole arc of movement of 0–105°. The difference between static extension and flexion torque was maximal 11% in average at about 83° of flexion. Static torque was always smaller than dynamic torque during extension movement and always greater than dynamic torque during flexion movement. The kind of preceding movement therefore showed an influence to the torque being generated in the proximal interphalangeal joint. The effect could be simulated on a mechanical finger device.  相似文献   

11.
Summary The metathoracic femoral chordotonal organ is a receptor of the locust,Schistocerca, hindleg that encodes the angle of the femoro-tibial joint. However, the discharge of the organ shows considerable hysteresis, in that there is a substantial decline in the level of afferent firing when the tibia is moved and then returned to its initial position. Similar hysteresis is also seen in some joint receptors and interneurons of other invertebrates and vertebrates. When the chordotonal organ is stimulated in freely moving locusts, mimicking sudden changes in joint angle, reflex discharges can be elicited in the tibial extensor muscle that resist apparent joint movement and also show similar hysteresis. This pattern of motoneuron activity is demonstrated to potentially function to eliminate residual, catch muscle tensions that result from increases in motoneuron firing frequency. This adaptation could also serve to produce accurate load compensation.  相似文献   

12.
We studied coordination of central motor commands (CMCs) coming to the muscles that flex and extend the shoulder and elbow joints in the course of generation of voluntary isometric efforts of different directions by the forearm. Dependences of the characteristics of these commands on the direction of the effort and rate of its generation were analyzed. Amplitudes of rectified and averaged EMGs recorded from a number of shoulder belt and shoulder muscles were considered correlates of the CMC intensity. The development of the effort of a given direction and rate of rise was realized in the horizontal-plane operational space; the arm position corresponded to the 30 deg angle in the shoulder joint (external angle with respect to the frontal plane) and 90 deg angle in the elbow joint. We plotted sector diagrams of the relative changes in the level of dynamic and stationary phases of EMG activity of the studied muscles for the entire set of directions of the efforts generated with different rates of rise. In the course of formation of rapid two-joint isometric efforts, realization of nonsynergic motor tasks (extension of one joint and flexion of another one, and vice versa) required significant activation of muscles of different functional directions for both joints. Time organization of EMG activity of extensors and flexors of the shoulder and elbow joints related to the maximum and relatively rapid generation of the effort (rise time 0.12 to 0.13 and 0.25 sec, respectively) was rather complex and included dynamic and stationary phases. With these time parameters of generation of the efforts (both flexion and extension), the appearance at the stationary effort of 40 N was controlled based on coordinated interaction of dynamic phases of the activation of agonistic and antagonistic muscles. It is concluded that CMCs coming to extensors and flexors of both joints upon generation of rapid isometric efforts are rather similar in their parameters to those under conditions of realization of the forearm movements in the space in an isotonic mode.  相似文献   

13.
The purpose of this study was to examine two hypotheses: (a) during voluntary and electrically induced isometric contractions the moments measured at the dynamometer are different from the resultant moments in the same plane around the ankle joint and (b) at a given resultant moment during electrically induced isometric contractions the ankle angle while loading is different from the ankle angle while unloading. Twenty-seven long distance runners participated in the study. All subjects performed isometric maximal voluntary contractions (MVC) and contractions induced by electrostimulation at four different ankle-knee angle combinations on a Biodex-dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 120 Hz. The main findings were: (a) the resultant moment at the ankle joint and the moment measured by the Biodex-dynamometer during isometric contractions are different, (b) during a plantar flexion effort the ankle angle changes significantly, whereas the knee angle shows only small and in most cases not significant changes, and (c) at identical resultant ankle joint moments the ankle angles are different between the loading and the unloading phases. The observed differences may lead to erroneous conclusions concerning the following: (a) diagnostic of muscle architecture, (b) estimation of the moment-ankle angle relationship and (c) estimation of the strain and hysteresis of tendons and aponeuroses.  相似文献   

14.
How do synergistic muscles interact, when their contraction aims at stabilizing and fine-tuning a movement, which is induced by the antagonistic muscle? The aim of the study was to analyze the interaction of biceps and brachioradialis during fine-tuning control tasks in comparison to load bearing ones. The surface electromyogram of biceps, brachioradialis and triceps were examined in 15 healthy subjects in dynamic flexion and extension movements with different combinations of contraction levels, joint angles and angular velocities. The measurements were conducted in two configurations, where the torque due to an external load opposes the rotational direction of the elbow flexion (load bearing tasks) or the elbow extension (fine-tuning tasks).Whereas during load bearing control tasks, similar muscular activation of biceps and brachioradialis was observed for all joint angles, angular velocities and external loads, during fine-tuning control tasks a significant difference of the muscular activation of both flexors was observed for 1 kg, F(3.639, 47.305) = 2.864, p = 0.037, and 5 kg of external load, F(1.570, 21.976) = 6.834, p = 0.008.The results confirm the synergistic muscular activation of both flexors during load bearing tasks, but suggest different control strategies for both flexors when they comprise a fine-tuning control task.  相似文献   

15.
In healthy humans, we recorded the H reflex induced by transcutaneous stimulation of the tibial nerve (recording from the soleus muscle). In subjects in the lying position, we studied changes in the H reflex values after preceding voluntary arm movements realized with a maximum velocity after presentation of an acoustic signal. On the 200th to 300th msec after forearm flexion, long-lasting inhibition of the H reflex developed following a period of initial facilitation and reached the maximum, on average, 700 msec from the moment of the movement. Flexion of the contralateral upper limb in the elbow joint induced deeper inhibition than analogous movement of the ipsilateral arm. Long-lasting clear inhibition of the H reflex developed after arm flexion in the elbow joint but was slightly expressed after finger clenching. After inhibition reached the maximum, its time course was satisfactorily approximated by a logarithmic function of the time interval between the beginning of the conditioning voluntary movement and presentation of the test stimulus. Durations of inhibition calculated using a regression equation were equal to 6.6 sec and 8.5 sec after ipsilateral and contralateral elbow-joint flexions, respectively. Inhibition was not eliminated under conditions of tonic excitation of motoneurons of the tested muscle upon voluntary foot flexion. Long-lasting inhibition of the H reflex was also observed after electrical stimulation-induced flexions of the upper limb. The obtained data indicate that movements of the upper limb cause reflex long-lasting presynaptic inhibition of the soleus-muscle H reflex that can play a noticeable role in redistribution of the muscle tone during motor activity. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 221–227, May–June, 2008.  相似文献   

16.
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.  相似文献   

17.
PurposeNo direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity.MethodsSeven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests.ResultsSurface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion.ConclusionsIt is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes.  相似文献   

18.
Kostyukov  A. I. 《Neurophysiology》1988,20(5):514-520
A steady rate of efferent stimulation was applied to anesthetized cats during acute experiments. Changes in the length of m.soleus, m. gastrocnemius, and m. plantaris of the hindlimb were studied during linear changes in the external load (ramp-and-hold alterations). A servocontrolled linear motor was used to provide mechanical stimulation. It was found that muscular contraction produced by load may be extremely accurately approximated by reaction of a dynanic system consisting of a sequence with nonlinear statistics and linear dynamics. Nonlinear statistics of muscle properties are determined according to the nonlinear statistical pattern of the power itself on the one hand and by hysteresis effects on the other. A hypothesis is presented regarding connections between the latter and function of the troponin-tropomyosin regulatory complex. A first order linear differential equation is used to describe the dynamic sequence corresponding to the familiar three component viscoelastic muscle model. The proposed model could be used to help analyze processes of muscle stretch in a yield situation, although satisfactory indication was only obtained for fairly slow load increments.A. A. Bogomolets Institute of Physiology, Academy of Scences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 694–702, September–October, 1988.  相似文献   

19.
In 17 healthy volunteers, we studied movements of the forearm, which included episodes of positioning on the target level. The trajectory of the non-ballistic (relatively slow) movement looked like a double trapezium (flexion of the elbow joint from the state of full extension, 0 deg, positioning on the 50 deg level, further flexion to the limit angle of 100 deg, and a similar reverse sequence). The command trajectory and the trajectory of the realized movement were visualized with movements of cursors on a monitor in time/joint angle coordinates. We compared parameters of the tracking movements (in the presence of visual feedback) and their blindfold reproduction (with the complete absence of visual control). It was found that blindfold reproduction movements differ from sample tracking movements and their reproduction with partial limitation of visual control [16] in higher peak velocities and shorter durations, i.e., a trend toward conversion of such movements into ballistic ones was observed. Under conditions of elimination of visual control, movements that led to positioning were mostly hypermetric, i.e., positioning was usually accompanied by positive systematic errors (whose sign coincided with the direction of the preceding movement phase). The mean intragroup value of the systematic error of the first positioning (after flexion to the target level) was +6.73 ± 1.15 deg, while the respective mean for the second positioning (after extension to the same level) was +4.00 ± 1.31 deg. The nonlinear properties of stretch receptors of muscles whose activity provides the formation of a proprioceptive estimate of the joint angle are considered the crucial reason for systematic errors of blindfold positioning.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 393–404, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

20.
To reduce anatomically unrealistic limb postures in a virtual musculoskeletal model of a horse's forelimb, accurate knowledge on forelimb joint constraints is essential. The aim of this cadaver study is to report all orientation and position changes of the finite helical axes (FHA) as a function of joint angle for different equine forelimb joints. Five horse cadaver forelimbs with standardized cuts at the midlevel of each segment were used. Bone pins with reflective marker triads were drilled into the forelimb bones. Unless joint angles were anatomically coupled, each joint was manually moved independently in all three rotational degrees of freedom (flexion–extension, abduction–adduction, internal–external rotation). The 3D coordinates of the marker triads were recorded using a six infra-red camera system. The FHA and its orientational and positional properties were calculated and expressed against joint angle over the entire range of motion using a finite helical axis method. When coupled, joint angles and FHA were expressed in function of flexion–extension angle. Flexion–extension movement was substantial in all forelimb joints, the shoulder allowed additional considerable motion in all three rotational degrees of freedoms. The position of the FHA was constant in the fetlock and elbow and a constant orientation of the FHA was found in the shoulder. Orientation and position changes of the FHA over the entire range of motion were observed in the carpus and the interphalangeal joints. We report FHA position and orientation changes as a function of flexion–extension angle to allow for inclusion in a musculoskeletal model of a horse to minimize calculation errors caused by incorrect location of the FHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号