首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tu C  Rowlett RS  Tripp BC  Ferry JG  Silverman DN 《Biochemistry》2002,41(51):15429-15435
Catalysis of the dehydration of HCO(3)(-) by carbonic anhydrase requires proton transfer from solution to the zinc-bound hydroxide. Carbonic anhydrases in each of the alpha, beta, and gamma classes, examples of convergent evolution, appear to have a side chain extending into the active site cavity that acts as a proton shuttle to facilitate this proton transfer, with His 64 being the most prominent example in the alpha class. We have investigated chemical rescue of mutants in two of these classes in which a proton shuttle has been replaced with a residue that does not transfer protons: H216N carbonic anhydrase from Arabidopsis thaliana (beta class) and E84A carbonic anhydrase from the archeon Methanosarcina thermophila (gamma class). A series of structurally homologous imidazole and pyridine buffers were used as proton acceptors in the activation of CO(2) hydration at steady state and as proton donors of the exchange of (18)O between CO(2) and water at chemical equilibrium. Free energy plots of the rate constants for this intermolecular proton transfer as a function of the difference in pK(a) of donor and acceptor showed extensive curvature, indicating a small intrinsic kinetic barrier for the proton transfers. Application of Marcus rate theory allowed quantitative estimates of the intrinsic kinetic barrier which were near 0.3 kcal/mol with work functions in the range of 7-11 kcal/mol for mutants in the beta and gamma class, similar to results obtained for mutants of carbonic anhydrase in the alpha class. The low values of the intrinsic kinetic barrier for all three classes of carbonic anhydrase reflect proton transfer processes that are consistent with a model of very rapid proton transfer through a flexible matrix of hydrogen-bonded solvent structures sequestered within the active sites of the carbonic anhydrases.  相似文献   

2.
Iverson TM  Alber BE  Kisker C  Ferry JG  Rees DC 《Biochemistry》2000,39(31):9222-9231
The prototype of the gamma-class of carbonic anhydrase has been characterized from the methanogenic archaeon Methanosarcina thermophila. Previously reported kinetic studies of the gamma-class carbonic anhydrase are consistent with this enzyme having a reaction mechanism similar to that of the mammalian alpha-class carbonic anhydrase. However, the overall folds of these two enzymes are dissimilar, and apart from the zinc-coordinating histidines, the active site residues bear little resemblance to one another. The crystal structures of zinc-containing and cobalt-substituted gamma-class carbonic anhydrases from M. thermophila are reported here between 1.46 and 1.95 A resolution in the unbound form and cocrystallized with either SO(4)(2)(-) or HCO(3)(-). Relative to the tetrahedral coordination geometry seen at the active site in the alpha-class of carbonic anhydrases, the active site of the gamma-class enzyme contains additional metal-bound water ligands, so the overall coordination geometry is trigonal bipyramidal for the zinc-containing enzyme and octahedral for the cobalt-substituted enzyme. Ligands bound to the active site all make contacts with the side chain of Glu 62 in manners that suggest the side chain is likely protonated. In the uncomplexed zinc-containing enzyme, the side chains of Glu 62 and Glu 84 appear to share a proton; additionally, Glu 84 exhibits multiple conformations. This suggests that Glu 84 may act as a proton shuttle, which is an important aspect of the reaction mechanism of alpha-class carbonic anhydrases. A hydrophobic pocket on the surface of the enzyme may participate in the trapping of CO(2) at the active site. On the basis of the coordination geometry at the active site, ligand binding modes, the behavior of the side chains of Glu 62 and Glu 84, and analogies to the well-characterized alpha-class of carbonic anhydrases, a more-defined reaction mechanism is proposed for the gamma-class of carbonic anhydrases.  相似文献   

3.
4.
Human carbonic anhydrases. 3. Immunochemical studies   总被引:3,自引:0,他引:3  
  相似文献   

5.
Gamma carbonic anhydrases in plant mitochondria   总被引:2,自引:0,他引:2  
Three genes from Arabidopsis thaliana with high sequence similarity to gamma carbonic anhydrase (γCA), a Zn containing enzyme from Methanosarcina thermophila(CAM), were identified and characterized. Evolutionary and structural analyses predict that these genes code for active forms of γCA. Phylogenetic analyses reveal that these Arabidopsis gene products cluster together with CAM and related sequences from α and γ proteobacteria, organisms proposed as the mitochondrial endosymbiont ancestor. Indeed, in vitro and in vivo experiments indicate that these gene products are transported into the mitochondria as occurs with several mitochondrial protein genes transferred, during evolution, from the endosymbiotic bacteria to the host genome. Moreover, putative CAM orthologous genes are detected in other plants and green algae and were predicted to be imported to mitochondria. Structural modeling and sequence analysis performed in more than a hundred homologous sequences show a high conservation of functionally important active site residues. Thus, the three histidine residues involved in Zn coordination (His 81, 117 and 122), Arg 59, Asp 61, Gin 75, and Asp 76 of CAM are conserved and properly arranged in the active site cavity of the models. Two other functionally important residues (Glu 62 and Glu 84 of CAM) are lacking, but alternative amino acids that might serve to their roles are postulated. Accordingly, we propose that photosynthetic eukaryotic organisms (green algae and plants) contain γCAs and that these enzymes codified by nuclear genes are imported into mitochondria to accomplish their biological function.  相似文献   

6.
Activation of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases (CAs, EC 4.2.1.1) with a series of natural and non-natural amino acids and aromatic/heterocyclic amines has been investigated. Cab, Zn-Cam and Co-Cam showed an activation profile with natural, L- and D-amino acids very different of those of the alpha-class enzymes CA I, II and III. Most of these compounds showed medium efficacy as archaeal CA activators, except for D-Phe and L-Tyr which were effective Cab activators (K(A)s of 10.3-10.5 microM), 2-pyridylmethylamine and 1-(2-aminoethyl)-piperazine which effectively activated Zn-Cam (K(A)s of 10.1-11.4 microM) and serotonin, L-adrenaline and 2-pyridylmethylamine which were the best Co-Cam activators (K(A)s of 0.97-8.9 microM). We prove here that the activation mechanisms of the alpha-, beta-, and gamma-class CAs are similar, although the activation profiles with various compounds differ dramatically between these diverse enzymes.  相似文献   

7.
Amino Acids - Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a...  相似文献   

8.
Gamma carbonic anhydrases in plant mitochondria   总被引:1,自引:0,他引:1  
Plant mitochondria contain non-phosphorylating bypasses of the respiratory chain, catalysed by the alternative oxidase (AOX) and alternative NADH dehydrogenases (NDH), as well as uncoupling (UCP) protein. Each of these components either circumvents or short-circuits proton translocation pathways, and each is encoded by a small gene family in Arabidopsis. Whole genome microarray experiments were performed with suspension cell cultures to examine the effects of various 3 h treatments designed to induce abiotic stress. The expression of over 60 genes encoding components of the classical, phosphorylating respiratory chain and tricarboxylic acid cycle remained largely constant when cells were subjected to a broad range of abiotic stresses, but expression of the alternative components responded differentially to the various treatments. In detailed time-course quantitative PCR analysis, specific members of both AOX and NDH gene families displayed coordinated responses to treatments. In particular, the co-expression of AOX1a and NDB2 observed under a number of treatments suggested co-regulation that may be directed by common sequence elements arranged hierarchically in the upstream promoter regions of these genes. A series of treatment sets were identified, representing the response of specific AOX and NDH genes to mitochondrial inhibition, plastid inhibition and abiotic stresses. These treatment sets emphasise the multiplicity of pathways affecting alternative electron transport components in plants.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s11103-005-5514-7  相似文献   

9.
Large-scale preparation of the human carbonic anhydrases   总被引:3,自引:0,他引:3  
A procedure for the large-scale preparation of human carbonic anhydrases B and C is described. The procedure has been adopted for routine use in this laboratory for preparing the large amounts of protein required for primary structural studies on both enzymes.  相似文献   

10.
11.
12.
Carbonic anhydrase (CA) has been purified from the host tissue of Tridacna gigas, a clam that lives in symbiosis with the dinoflagellate alga, Symbiodinium. At least two isoforms of CA were identified in both gill and mantle tissue. The larger (70 kDa) isoform is a glycoprotein with both N- and O-glycans attached and has highest homology to CAII. It is associated with the membrane fraction while the smaller (32 kDa) is present in the aqueous phase in both tissues. The 32 kDa CA has high homology with mammalian CAI at the N-terminus. Both isoforms cross-reacted with antibodies to CAII from chicken. Immunohistology demonstrated that the 70 kDa CA is present within the ciliated branchial filaments and cells lining the tertiary water channels in the gills of T. gigas. This is consistent with a role in the transport of inorganic carbon (Ci) to the haemolymph and therefore supply of Ci to the zooxanthellae. CA was also detected in mantle epithelial cells where it may also contribute to Ci supply to the zooxanthellae. The hyaline body and nerve tissue in the mantle express the 70 kDa CA where it may be involved in light sensing and nervous transmission.  相似文献   

13.
In the gastric microenvironment, Helicobacter pylori is exposed to bicarbonate, urea and acid. Here it is demonstrated that both H. pylori carbonic anhydrases (CAs) are required for maintaining urease activity and therefore influence H. pylori urea resistance at neutral pH. Furthermore, the beta-CA is required for acid resistance as indicated by a growth defect of the corresponding mutant at low pH. The alpha- and beta-CA mutants as well as the double mutant were more resistant to bicarbonate, indicating that both enzymes are involved in bicarbonate metabolism. These phenotypes support important CA-functions in H. pylori urea and bicarbonate metabolism and acid resistance. Thus, both CA enzymes might be required for survival in the gastric niche.  相似文献   

14.
Protein structure contains evolutionary information and it is more highly conserved than sequence. The evolution of structure in gamma-class carbonic anhydrase (gamma-CA) and its structurally related proteins (gammaCASRPs) were discussed. To obtain a reliable analysis, we defined a subset that contains all specificities and organisms as the nonredundant set using QR factorization based on the multiple structural alignment of the known crystallographic structures of gammaCASRPs with Q(H) as the structural homology measure. Then, we applied unweighted pair group method with arithmetic averages (UPGMA) to reconstruct structural phylogeny. We found that gamma-CA most likely arose through duplication events; the domain of gamma-CA underwent a process of alpha-helical content from amino-terminal end to carboxyl-terminal end of the left-handed beta-helix (LbetaH); the capacity of gamma-CA to bind Zn occurred early in evolution and only later included the ability to catalyze the reversible hydration of CO(2) efficiently for the occurrence of two loops involving Glu 62 and Glu 84, respectively, and a long helix at the carboxyl-terminal end of the LbetaH. In addition, the main conserved regions in these structures are in the structurally constrained residues of LbetaH domain, and the topology of the structural dendrogram can be rather easily understood in terms of functional diversification.  相似文献   

15.
A titratable exchangeable proton resonance assignable to a histidine imidazole ring N--H proton is observed approximately minus 15 ppm downfield from tetramethylsilane. The chemical shift of this resonance is affected by sulfonamide and anion inhibitors, and by removal of zinc or replacement of zinc by cobalt, indicating that the proton is located at or near the active site. The pH dependence of the chemical shift of this resonance, which is abolished by inhibitors, reflects the titration of a group with a pK-a of 7.3 in human carbonic anhydrase B and smaller than or equal to 7.1 in human carbonic anhydrase C. These pK-a values are interpreted to be due to the ionization of a neutral imidazole to form the imidazolate anion coordinated to zinc. A mechanism for enzymatic catalysis involving reversible deprotonation and coordination of a histidine to the metal is consistent with these studies.  相似文献   

16.
M Bouthier  J M Gulian  B Mallet  R Calaf  J Reynaud 《Biochimie》1979,61(10):1161-1168
Limiting viscosity numbers of bovine and ovine erythrocytes carbonic anhydrase variants were calculated by the objective method of comparing viscosimetric data obtained from low-activity-human erythrocyte carbonic anhydrase and its natural variant. Shifts of mobilities and isoelectric points are shown for all species variants, but variations of limiting viscosity numbers were only detected for human and bovine variants. Results of the study are consistent with the observation that variants arise by deamidation of erythrocyte carbonic anhydrases, and that deamidation is responsible for changes in structure and hydration (i. e. "conformational" modifications). Thus, all the variants so far investigated are stable conformational variants or erythrocyte carbonic anhydrases.  相似文献   

17.
Carbonic anhydrases (CAs), which catalyze the reversible reaction of carbonate hydration, are important for cartilage homeostasis. The full spectrum of CA activity of all 13 isoenzymes in articular cartilage is unknown. This study quantified the mRNA profile of CAs in rat articular cartilage, using quantitative polymerase chain reactions. Among the 13 functional CAs, CAs II, III, Vb, IX, XII and XIII were significantly expressed at mRNA level by the chondrocytes in articular cartilage. To verify these significantly expressed CAs in articular cartilage at protein level, immunohistochemistry was performed. While CAs III, Vb and XII distributed in the full-thickness of cartilage, including the calcified zone of cartilage, CA II was mainly localized in the proliferative zone of cartilage. CA IX was limited in the superficial zone of cartilage and CA XIII expressed in the superficial and partially mid zone. These results provide a framework for understanding individual CAs as well as the integrated CA family in cartilage biology, including matrix mineralization.  相似文献   

18.
Why are there carbonic anhydrases in the liver?   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
  • 1.1. Carbonic anhydrases from the red cells, ocular secretory tissues, and rectal gland of species of Myxine, elasmobranchii, and Teleostii, were examined using rates of CO2 hydration. The enzyme is absent from corneal endothelium and lens of elasmobranchs and salt water teleosts, but present in fresh water fish.
  • 2.2. The red cell carbonic anhydrase of the representative elasmobranch, Squalus acanthias, is a single enzyme of relatively low activity, Kcat = 2 × 104 sec−1 at 1°C. The ciliary folds and rectal gland of S. acanthias contain carbonic anhydrases with turnover numbers five times higher than the red cell enzyme.
  • 3.3. Both red cell and secretory enzymes of S. acanthias are susceptible to inhibition by sulfonamides within a 10-fold range of mammalian secretory carbonic anhydrases. In general, they are moderately sensitive to anion inhibition; a notable exception is enzyme from rectal gland which is insensitive to halion inhibition.
  • 4.4. In teleosts, both red cell and secretory carbonic anhydrases have a high turnover number, and are susceptible to sulfonamide inhibition. In red cells there appear isozyme(s) of lower activity, in considerable concentration.
  • 5.5. Taken with earlier ion transport work in S. acanthias, the basic vertebrate pattern of aqueous humor formation, both chemically and physiologically, appears to be established in this “primitive” species.
  • 6.6. The finding of at least three different types of carbonic anhydrases in S. acanhias suggests that separate loci for the enzyme have existed throughout most of vertebrate evolution.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号