首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila mojavensis and Drosophila arizonae, a pair of sibling species endemic to North America, constitute an important model system to study ecological genetics and the evolution of reproductive isolation. This species pair can produce fertile hybrids in some crosses and are sympatric in a large part of their ranges. Despite the potential for hybridization in nature, however, evidence of introgression has not been rigorously sought. Further, the evolutionary relationships within and among the geographically distant populations of the two species have not been characterized in detail using high-resolution molecular studies. Both species have six chromosomes: five large acrocentrics and one 'dot' chromosome. Fixed inversion differences between the species exist in three chromosomes (X, 2 and 3) while three are colinear (4, 5 and 6), suggesting that were introgression to occur, it would be most likely in the colinear chromosomes. We utilized nucleotide sequence variation at multiple loci on five chromosomes to test for evidence of introgression, and to test various scenarios for the evolutionary relationships of these two species and their populations. While we do not find evidence of recent introgression, loci in the colinear chromosomes appear to have participated in exchange in the past. We also found considerable population structure within both species. The level of differentiation discovered among D. arizonae populations was unexpectedly high and suggests that its populations, as well as those of D. mojavensis, may be themselves undergoing incipient speciation and merit further attention.  相似文献   

2.
Interspecific hybridization among Hawaiian species ofCyrtandra (Gesneriaceae) was investigated using randomly amplified polymorphic DNA (RAPD) markers. Thirty-three different primers were used to investigate interspecific hybridization for 17 different putative hybrids based on morphological intermediacy and sympatry with putative parental species. RAPD data provided evidence for the hybrid origin of all putative hybrid taxa examined in this analysis. However, the patterns in the hybrid taxa were not found to be completely additive of the patterns found in the parental species. Markers missing in the hybrid taxa can be attributed to polymorphism in the populations of the parental species and the dominant nature of inheritance for RAPD markers. Unique markers found within hybrid taxa require further explanation but do not necessarily indicate that the taxa are not of hybrid origin. The implications suggest that these interspecific hybridization events had, and continue to have, an effect on the adaptive radiation and conservation biology ofCyrtandra.  相似文献   

3.
In an effort to understand the forces shaping evolution of regulatory genes and patterns, we have compared data on interspecific differences in enzyme expression patterns among the rapidly evolving Hawaiian picture-winged Drosophila to similar data on the more conservative virilis species group. Divergence of regulatory patterns is significantly more common in the former group, but cause and effect are difficult to discern. Random fixation of regulatory variants in small populations and/or during speciation may be somewhat more likely than divergence driven by selection. Within the picture-winged group, we also have compared enzymes that fulfill different metabolic roles. There are highly significant differences between individual enzymes, but no obvious correlations to functional categories. Correspondence to: W.J. Dickinson  相似文献   

4.
5.
6.
Conservation Implications of Invasion by Plant Hybridization   总被引:12,自引:0,他引:12  
The increasing number of invasive exotic plant species in many regions and the continuing alteration of natural ecosystems by humans promote hybridization between previously allopatric species; among both native as well as between native and introduced species. We review the ecological factors and mechanisms that promote such hybridization events and their negative consequences on biological diversity. Plant invasions through hybridization may occur in four different ways: hybridization between native species, hybridization between an exotic species and a native congener, hybridization between two exotics and by the introduction and subsequent spread of hybrids. The main harmful genetic effect of such hybrids on native species is the loss of both genetic diversity and of locally adapted populations, such as rare and threatened species. The spread of aggressive hybrid taxa can reduce the growth of, or replace, native species. The main factor promoting the formation of hybrids is species dispersal promoted by humans. However, the success and spread of hybrids is increased by disturbance and fragmentation of habitats, thus overcoming natural crossing barriers, and range expansions due to human activity. There are differences in flowering, pollination and seed dispersal patterns between parental species and hybrids. Hybrid resistance to pathogens and herbivores may also enhance the success of hybrids. To predict the mechanisms and consequences of invasions mediated by hybridization, extensive data on hybrid ecology and biology are needed, as well as carefully designed field experiments focused on the comparative ecology of parental populations and hybrids.  相似文献   

7.
Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double‐digest restriction‐site‐associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua?i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua?i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island‐like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.  相似文献   

8.
Drosophila heteroneura and D differens are closely related, interfertile species of the Hawaiian picture-winged group. They display marked qualitative and quantitative differences in the pattern of expression of alcohol dehydrogenase (ADH) and an aldehyde oxidase (AO-1). These presumptive regulatory differences are revealed by comparisons of the relative levels of these enzymes in various tissues in larvae and adults. In hybrids produced between parents carrying different electrophoretic alleles at the structural loci for these two enzymes, each allele is expressed according to the developmental program characteristic of the parent from which it was derived. This result indicates control of the differences in pattern of expression by one or more cis-acting sites associated with each structural locus. The distribution of activity among all the three forms of these dimeric enzymes produced in hybrids indicates that the pattern differences reflect differential accumulation of enzyme molecules, not altered catalytic properties. As expected, the regulatory differences segregate with the electrophoretic markers in backcrosses.  相似文献   

9.
C. Y. Wu  J. Mote-Jr.    M. D. Brennan 《Genetics》1990,125(3):599-610
Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.  相似文献   

10.
Over the last several decades many picture-winged Drosophila have become less common in both geographical distribution and local population size (pers. obs., Foote pers. comm., Montgomerey pers. comm.). Here we report on a study of two Hawaiian Drosophila species, D. engyochracea, and D. hawaiiensis, to determine the impact that changes in population sizes over the past thirty years have had on the genetic diversity of these species. D. engyochracea is known from only two locations on the Island of Hawai'i (Kipuka Ki and Kipuka Pua'ulu), while D. hawaiiensis is currently more wide spread across Hawai'i Island. We collected 65 D. hawaiiensis and 66 D. engyochracea from two forest patches (kipuka) isolated by a 400 year old volcanic ash deposit. DNA sequence data for 515 bases of the mitochondrial gene COII was analyzed for both species to estimate relative total genetic diversity as well as inter-kipuka gene flow. The more wide spread species, D. hawaiiensis, has more genetic diversity (23 vs. 11 unique haplotypes) than the rarer species, D. engyochracea. The distribution of haplotypes in the kipuka is consistent with more gene flow in D. engyochracea than in D. hawaiiensis. Phylogenetic analysis indicates a small number of individuals morphologically identified as one species but have DNA sequence diagnostic for the other species. These results are consistent with these individuals being descendant from hybrids between species.  相似文献   

11.
The Hawaiian picture-winged flies in the genus Drosophila are a spectacular example of rapid evolutionary diversification in which sexual selection is considered an important mechanism for reproductive isolation and speciation. We investigated the behavioral reproductive isolation of two closely related and sympatric Hawaiian picture-winged Drosophila species, D. silvestris and D. heteroneura, which are known to hybridize in nature and produce viable and fertile hybrids. We compared the mating success of parental, F1 and backcross males in pairings with D. heteroneura females. The F1 males were produced by mating D. heteroneura males with D. silvestris females, and the backcross males were produced by mating F1 females with D. heteroneura males. The mating success of backcross males paired with D. heteroneura females were significantly reduced relative to that of parental and F1 males. This reduced mating success occurred primarily at a late stage of courtship where female choice of mate may be important. Two- and three-gene models demonstrate that epistasis involving a few genes could account for the observed variation in male mating success. These results are consistent with negative epistasis in the backcross generation and support the importance of sexual selection and negative epistasis in the evolution and maintenance of these species.  相似文献   

12.
This review deals with natural hybridization, an important subject in conservation biology. Natural hybridization is defined as the secondary contact between two populations that have evolved separately over a long period of time. This process is uncommon in terms of the total number of individuals involved, but is much less unusual if we consider the number of species that hybridize. Thus, natural hybridization may be an important process in the shaping of the evolutionary trajectories of many plant and animal species. The possible consequences of natural hybridization, which can either promote or prevent evolutionary divergence between taxa and will involve many ecological factors, are analysed here. I question whether natural hybridization poses always a problem in conservation and try to answer when conservation biologists and managers do have a responsibility to take decisions. Several examples of hybridization related to management strategies are also discussed. In conclusion, I believe that it is impossible to provide conservation managers with a simple handbook explaining how to proceed in cases of hybridization––each case is unique and should be analyzed individually. The only advice is that the more we know about hybridization and the factors involved, the better we will be able to assess each situation, to establish the possible consequences and even to estimate the probability of success of any particular conservation strategy.  相似文献   

13.
Climate change is profoundly affecting the evolutionary trajectory of individual species and ecological communities, in part through the creation of novel species assemblages. How climate change will influence competitive interactions has been an active area of research. Far less attention, however, has been given to altered reproductive interactions. Yet, reproductive interactions between formerly isolated species are inevitable as populations shift geographically and temporally as a result of climate change, potentially resulting in introgression, speciation, or even extinction. The susceptibility of hybridization rates to anthropogenic disturbance was first recognized in the 1930s. To date, work on anthropogenically mediated hybridization has focused primarily on either physical habitat disturbance or species invasion. Here, I review recent literature on hybridization to identify how ecological responses to climate change will increase the likelihood of hybridization via the dissolution of species barriers maintained by habitat, time, or behavior. Using this literature, I identify several cases where novel hybrid zones have recently formed, likely as a result of changing climate. Future research should focus on identifying areas and taxonomic groups where reproductive species interactions are most likely to be influenced by climate change. Furthermore, a better understanding of the evolutionary consequences of climate‐mediated secondary contact is urgently needed. Paradoxically, hybridization is both a major conservation concern and an important source of novel genetic and phenotypic variation. Hybridization may therefore both contribute to increasing rates of extinction and stimulate the creation of novel phenotypes that will speed adaptation to novel climates. Predicting which result will occur following secondary contact will be an important contribution to conservation for many species.  相似文献   

14.
15.
Nosil P  Crespi BJ  Gries R  Gries G 《Genetica》2007,129(3):309-327
Sexual isolation can evolve due to natural selection against hybrids (reinforcement). However, many different forms of hybrid dysfunction, and selective processes that do not involve hybrids, can contribute to the evolution of sexual isolation. Here we review how different selective processes affect the evolution of sexual isolation, describe approaches for distinguishing among them, and assess how they contribute to variation in sexual isolation among populations of Timema cristinae stick-insects. Pairs of allopatric populations of T. cristinae living on different host-plant species exhibit greater sexual isolation than those on the same host, indicating that some sexual isolation has evolved due to host adaptation. Sexual isolation is strongest in regions where populations on different hosts are in geographic contact, a pattern of reproductive character displacement that is indicative of reinforcement. Ecological costs to hybridization do occur but traits under ecological selection (predation) do not co-vary strongly with the probability of between-population mating such that selection on ecological traits is not predicted to produce a strong correlated evolutionary response in mate preference. Moreover, F1 hybrid egg inviability is lacking and the factors contributing to reproductive character displacement require further study. Finally, we show that sexual isolation involves, at least in part, olfactory communication. Our results illustrate how understanding of the evolution of sexual isolation can be enhanced by isolating the roles of diverse ecological and evolutionary processes.  相似文献   

16.
Summary Some populations of Darwin's Finches (Emberizinae) are exceptionally variable in body size and beak traits as a result of introgressive hybridization. A study of museum specimens of honeycreeper-finches (Carduelinae) from the Hawaiian islands was undertaken to see if the same phenomenon was manifested by a different phyletic group of finches in a different archipelago. Five hundred and twenty-four specimens of the seven species with finch-like bills were measured and their coefficients of variation were compared with those of the ground finch group (six species) of Darwin's Finches. Coefficients were smaller in the Hawaiian finches. Sympatric and, hence, potentially hybridizing species on the island of Hawaii were not consistently more variable than the allopatric species on other islands in the archipelago. The one species with both sympatric and allopatric populations did not show greater variation in the sympatric population. There is little evidence from these comparisons of hybridization occurring in the last 100 years. The difference between the two finch faunas can be explained in terms of two factors. Finches have been present for a longer time in the Hawaiian archipelago than in the Galápagos archipelago and have had more time to not only diversify but to evolve pre- and post-zygotic isolating mechanisms. In the generally less seasonal and floristically richer Hawaiian islands they have evolved greater dietary specializations. Beak traits adapted to specialist feeding may have been under stronger stabilizing selection and hybrids (if formed) may have been at a strong disadvantage in the absence of an ecological niche intermediate between the niches of the two parental species. Results of published electrophoretic studies of genetic variation suggest that the early phase of differentiation, involving occasional introgressive hybridization, may last for up to 5 million years.  相似文献   

17.
Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory.  相似文献   

18.
Studies on hybridization have proved critical for understanding key evolutionary processes such as speciation and adaptation. However, from the perspective of conservation, hybridization poses a concern, as it can threaten the integrity and fitness of many wild species, including canids. As a result of habitat fragmentation and extensive hunting pressure, gray wolf (Canis lupus) populations have declined dramatically in Europe and elsewhere during recent centuries. Small and fragmented populations have persisted, but often only in the presence of large numbers of dogs, which increase the potential for hybridization and introgression to deleteriously affect wolf populations. Here, we demonstrate hybridization between wolf and dog populations in Estonia and Latvia, and the role of both genders in the hybridization process, using combined analysis of maternal, paternal and biparental genetic markers. Eight animals exhibiting unusual external characteristics for wolves - six from Estonia and two from Latvia - proved to be wolf-dog hybrids. However, one of the hybridization events was extraordinary. Previous field observations and genetic studies have indicated that mating between wolves and dogs is sexually asymmetrical, occurring predominantly between female wolves and male dogs. While this was also the case among the Estonian hybrids, our data revealed the existence of dog mitochondrial genomes in the Latvian hybrids and, together with Y chromosome and autosomal microsatellite data, thus provided the first evidence from Europe of mating between male wolves and female dogs. We discuss patterns of sexual asymmetry in wolf-dog hybridization.  相似文献   

19.
Blows MW  Higgie M 《Genetica》2002,116(2-3):239-250
It is becoming increasingly apparent that at least some aspects of the evolution of mate recognition may be amenable to manipulation in evolutionary experiments. Quantitative genetic analyses that focus on the genetic consequences of evolutionary processes that result in mate recognition evolution may eventually provide an understanding of the genetic basis of the process of speciation. We review a series of experiments that have attempted to determine the genetic basis of the response to natural and sexual selection on mate recognition in the Drosophila serrata species complex. The genetic basis of mate recognition has been investigated at three levels: (1) between the species of D. serrata and D. birchii using interspecific hybrids, (2) between populations of D. serrata that are sympatric and allopatric with respect to D. birchii, and (3) within populations of D. serrata. These experiments suggest that it may be possible to use evolutionary experiments to observe important events such as the reinforcement of mate recognition, or the generation of the genetic associations that are central to many sexual selection models.  相似文献   

20.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号