首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 2.
    Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

    3.
    In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

    4.
    To examine the involvement of Na+,K+,2Cl cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70–75% with a K i of ∼0.2–0.3 μm. At concentrations ranging up to 1 μm, bumetanide did not affect 36Cl influx and reduced it by 20–30% in the range from 3 to 100 μm. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na+- or Cl-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Na+ o and K+ o . Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a K i or ∼0.3 μm. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 μm) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Na+ o + Cl o )-dependent K+/K+ exchange and Na+ o -dependent K+,Cl cotransport, respectively. Received: 30 January 1996/Revised: 20 May 1996  相似文献   

    5.
    Summary Osmotic responses of slices of dogfish rectal gland to hypotonic (urea-free) and hypertonic media were studied. Transfer of tissue from isotonic (890 mosM) to hypotonic (550 mosM) saline produced an osmotic swelling associated with a slow net uptake of cell K+ (and Cl) and a slow, two-component efflux of urea. Media made hypertonic (1180 mosM) by addition of urea or mannitol produced osmotic shrinkage with a net loss of KCl. The cell osmotic responses in hypotonic media were lower than predicted for an ideal osmometer. No volume regulatory responses were seen subsequent to the initial osmotic effects. The cation influx in hypotonic media lacked specificity: in the presence of 0.5 mM ouabain or in K+-free media a net influx of Na+ was found. At steady state, the cell membrane potential evaluated from the Nernst potentials of K+ and triphenylmethyl phosphonium+, was independent of medium tonicity, suggesting the membrane potential as a determinant in the cellular osmotic response. Zero-time86Rb+ fluxes were measured:86Rb+ influx was not affected by hypotonicity, implying an unchanged operation of the Na+–K+-ATPase. On the other hand,86Rb+ efflux was significantly reduced at hypotonicity; this effect was transient, the efflux returning to the control value once the new steady state of cell volume had been reached. A controlled efflux system is therefore involved in the cell osmotic response. The absence of the volume regulatory phenomenon suggests that the cells are not equipped with a volume-sensing mechanism.Abbreviations and symbols DW dry weight - E extracellular (polyethylene glycol) space - E Nernst potential - H2Oe H2Oi tissue water, extra- and intracellular - TPMP + triphenyl methyl phosphonium salt - WW wet weight  相似文献   

    6.
    The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

    7.
    Summary After swelling in hyposmotic solution, Ehrlich ascites tumor cells shrink towards their original volume. Upon restoration of isosmolality (300 mOsm) the cells initially shrink but subsequently recover volume. This regulatory volume increase (RVI) is completely blocked when [Na+] o or [Cl] o is reduced by 50% in the presence of normal [K+] o . With normal [NaCl] o but less than 2 mm [K+] o , not only is volume recovery blocked but the cells lose KCl and shrink. When [K+] o is increased to 5 mm there is a rapid net uptake of K+ and Cl which results in volume recovery. This suggests that the reswelling phase requires the simultaneous presence of Na+, K+, and Cl. Although ouabain has no effect on volume recovery, bumetanide completely blocks RVI by inhibiting a cotransport pathway that mediates the net uptake of Na+, K+ and Cl in the ratio of 1Na1K2Cl. Na+ that accumulates is then replaced by K+ via the Na/K pump.I wish to thank my colleague, Dr. Thomas C. Smith for advice and helpful comments during the course of these studies. The excellent technical assistance provided by Rebecca Corcoran-Merrill is gratefully acknowledged.This investigation was supported by Grant CA 32927 from the National Cancer Institute, U.S. Public Health Service.  相似文献   

    8.
    Abstract The comparative Na+ tolerance of Chora buckellii cultured in freshwater (FW) or artificial Waldsea water (AWW, which contains about 110 mol m?3 each Na +, Mg2+, Cl? and SO2-4 was tested with respect to the external Na+ to Ca2+ ratio (Na: Ca). Fifty per cent of FW cells subjected to 70 mol m?3 NaCl, which raised Na:Ca from 10: 1 to 700: 1 and the external osmotic pressure from 0.024 to 0.402 MPa, died within 6 d. Death was associated with the loss of Na/K selectivity, H+ -pump activity and turgor. Restoration of Na:Ca to 10:1 in high Na+ medium with CaCl2 ensured 100% survival and maintained H+-pump activity and Na/K selectivity of FW cells. Turgor was regulated within 3 d with net uptake of Na +, K+ and Cl? in the vacuolc. Mg2+ was not as effective as Ca2+ in enhancing survival or maintaining H+ -pump activity and Na/K selectivity of FW cells in the presence of elevated Na+. However, turgor was regulated within 3 d by accumulation of Cl? and an unknown cation in the vacuole. All AWW cells subjected to an increase of 70 mol m ?3 NaCl, which raised Na: Ca from 16:1 to 25: 1 and the external osmotic pressure from 0.915 to 1.22 MPa, survived and maintained H + -pump activity. Turgor was regulated within 6d by accumulating Na +, K+ and Cl? in the vacuole. All AWW cells subjected to 70molm?3 NaCl in a medium in which Na:Ca was equal to 700:1 survived and maintained H + -pump activity, but showed loss of Na/K selectivity. Turgor was regulated with an unknown osmoticum(a) within 6 d.  相似文献   

    9.
    Ehrlich ascites tumor cells lose KCl and shrink after swelling in hypotonic media and in response to the addition of 2-deoxyglucose, propranolol, or the Ca2+ ionophore, A23187, plus Ca2+ in isotonic media. All of these treatments activate cell shrinkage via a pathway with the following characteristics: (1) the KCl loss responsible for cell shrinkage does not alter the membrane potential; (2) NO3? does not substitute for Cl?; (3) the net KCl movements are not inhibited by quinine or DIDS; and (4) early in this study furosemide was effective in inhibiting cell shrinkage but this sensitivity was subsequently lost. This evidence suggests that the KCl loss in these cells occurs via a cotransport mechanism. In addition, hypotonic media and the other agents used here stimulate a Cl? -Cl? exchange, a net loss of K+ and a net gain of Na+ which are not responsible for cell shrinkage. The Ehrlich cell also appears to have a Ca2+-activated, quinine-sensitive K+ conductive pathway but this pathway is not part of the mechanism by which these cells regulate their volume following swelling or shrink in isotonic media in response to 2-deoxyglucose or propranolol. Shrinkage by the loss of K+ through the Ca2+ stimulated pathway appears to be limited by Cl? conductive movements; for when NO3?, an anion demonstrated here to have a higher conductive movement than Cl?, is substituted for Cl?, the cells will shrink when the Ca2+-stimulated K+ pathway is activated.  相似文献   

    10.
    Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.  相似文献   

    11.
    Voltage clamp fluorometry was used to monitor conformational changes associated with electrogenic partial reactions of the Na+,K+-ATPase after changes in the concentration of internal sodium (Na+i) or external potassium (K+o). To probe the effects of the Na+i concentration on the Na+ branch of the Na+,K+-ATPase, oocytes were depleted of Na+i and then loaded with external sodium (Na+o) using the amiloride-sensitive epithelial sodium channel. The K+ branch of the Na+,K+-ATPase was studied by exposing the oocytes to different K+o concentrations in the presence and absence of Na+o to obtain additional information on the apparent affinity for K+o. Our results demonstrate that lowering the concentration of Na+i or increasing the amount of K+o in the external solution shifts the equilibrium toward E1/E1P. Furthermore, the K+o-induced relocation toward E1 occurs at a much lower K+o concentration when Na+o is absent, indicating a higher apparent affinity. Finally, voltage-dependent steps associated with the K+ branch or the Na+ branch of the Na+,K+-ATPase are affected by the K+o concentration or the Na+i concentration, respectively.  相似文献   

    12.
    Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

    13.
    Summary A membrane preparation enriched in the basolateral segment of the plasma membrane was isolated from the rat renal cortex by a procedure that included separation of particulates on a self-generating Percoll gradient. The uptake ofl-glutamate by the basolateral membrane vesicles was studied. A Na+ gradient ([Na+] o >[Na+] i ) stimulated the uptake ofl-glutamate and provided the driving force for the uphill transport of the acidic amino acid, suggesting a Na+-l-glutamate cotransport system in the basolateral membrane. A K+ gradient ([K+] i >[K+] o ) increased the uptake additionally. This effect was specific for K+ (Rb+). The action of the K+ gradient in enhancing the uptake ofl-glutamate had an absolute requirement for Na+. In the presence of Na+, but in the absence of a Na+ gradient. i.e., [Na+] o =[Na+] i , the K+ gradient also energized the concentrative uptake ofl-glutamate. This effect of the K+ gradient was not attributable to an alteration in membrane potential. The finding of a concentrative uptake system forl-glutamate energized by both Na+ ([Na+] o >[Na+] i and K+ ([K+] i >[K+] o ) gradients in the basolateral membrane, combined with previous reports of an ion gradient-dependent uphill transport system for this amino acid in the brush border membrane, suggests a mechanism by whichl-glutamate is accumulated intracellularly in the renal proximal tubule to extraordinarily high concentrations.  相似文献   

    14.
    Electropotential differences between the cytoplasm and external medium have been compared in the mature R. pipiens occyte and the ovulated unfertilized egg as a function of [Na]o, [K]o, [Ca]o and [Cl]o. In solutions containing 1.0 mM Ca++ the oocyte behaved as though it were predominantly permeable to K+ and Cl?, i.e., like a KCl electrode. However, the steady potential decreased with decreasing [Ca]o and in 5 × 10?4 mM [Ca]o the oocyte membrane behaved like a NaCl electrode. Studies on the steady potential as a function of [Na]o, [K]o and [Cl]o in 1.0 mM Ca++ or Ca-free solutions suggest that Ca++ controls the passive permeability of the oocyte membrane to Na+ and Cl?. In the ovulated unfertilized egg the K+ selectivity of the cell membrane disappeared and the system behaved like a NaCl electrode. No effect of external Ca++ or K+ concentration changes on the steady potential was observed. These results indicate that the ion permeability properties of the ovulated egg are similar to that of the ovarian oocyte in Ca-deficient medium, and suggests that the mechanism of ovulation may involve the removal of Ca++ regulation of ion permeability of the egg cell membrane.  相似文献   

    15.
    Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

    16.
    The mechanism of volume regulation in hypotonic media was analysed in human peripheral blood mononuclear (PBM) cells. Electronic cell sizing showed that hypotonic swelling is followed by a regulatory volume decrease (RVD) phase. This was confirmed by both electron microscopy and by cellular water determinations. The rate of regulatory shrinking was proportional to the degree of hypotonicity in the 0.5–0.9 X isotonic range. Cell viability was only marginally affected in this range. The content of cellular K+ decreased during RVD, while Na+ content remained unchanged. Similarly, the efflux of 86Rb (used as a K+ analog) increased upon dilution, whereas 22Na efflux was not altered. 86Rb uptake was enhanced by hypotonic stress and both ouabain-sensitive and -insensitive components were affected. A ouabain-sensitive stimulation was also seen in Na+- free media. Ouabain partially inhibited RVD only if added to the cells hours before hypotonic challenge. A normal shrinking response was observed in K+-free media, and also in Na+-free media when Li+, choline+, or Tris+ were the substitutes. In high K+ or Rb+ hypotonic media shrinking was absent and a second swelling phase was observed. Cs+ displayed an intermediate behavior, with shrinking observed at lower dilutions and secondary swelling at higher ones. The direction and magnitude of the response also changed when the external K+ concentration was varied and, with 50 mM K+, no regulatory volume change occurred following hypotonic stress. These findings suggest that RVD occurs largely by a passive loss of cellular K+, resulting from a selective increase in permeability to this ion. In addition, the (Na-K) pump appears to be activated upon cell swelling by a mechanism other than Na+ entry into the cell, but this activation is not essential for RVD.  相似文献   

    17.
    Cells of the salt-tolerant charophyte Lamprothamnium respond differently to hypotonic challenge according to their position on the plant (i.e. cell age). Differences in electrophysiological response are coupled with differences in cell fine structure, and the presence or absence of extracellular mucilage. (1) Young, apical (fast-regulating, FR) cells respond with sudden cessation of cyclosis, depolarization to –50 mV (in some cells by more than 100 mV) and increase in membrane conductance by up to an order of magnitude. Intracellular [K+]v, [Na+]v and [Cl]v decrease 1 h after hypotonic challenge. Patch-clamping cytoplasmic droplets reveals two types of K+ channel, 150 pS and 35 pS, and a small conductance Cl channel, 35 pS (conductances at estimated tonoplast resting potential between zero and 20 mV). Extracellular mucilage is thin (< 5 μm thick) or lacking, similar to freshwater Chara. Unlike freshwater charophytes these cells have a canalicular vacuolar system of large surface area and compartment the fluorochrome 6 carboxyfluorescein in the cytoplasm rather than the vacuolar system. (2) Older basal (slow-regulating, SR) cells do not cease streaming on hypotonic challenge and depolarize only slightly (by approximately 20 mV) with small or no change in membrane conductance. After 1 h the intracellular [K+]v, [Na+]v and [Cl]v scarcely change. Patch-clamping cytoplasmic droplets reveals two types of K+ channel, medium conductance 90 pS and low conductance (as in FR cells). The large conductance K+ channel was not observed. The Cl channel was more active in SR cells. The cells were coated with extracellular mucilage more than 10 μm thick. In a similar manner to freshwater Chara, these cells compartment 6 carboxyfluorescein in a large central vacuole. In the older cells, making up the bulk of any given plant, the simultaneous development of extracellular mucilage and a large central vacuole which compartments 6 carboxyfluorescein is associated with a minimal electrophysiological response to hypotonic challenge. The significance of these findings for salt-tolerance is discussed.  相似文献   

    18.
    Compartments and Fluxes of K, NA, and CL in Avena Coleoptile Cells   总被引:1,自引:8,他引:1       下载免费PDF全文
    By the compartmental analysis method of MacRobbie and Dainty, and Pitman, estimates of K+, Na+, and Cl concentrations and fluxes were obtained for the cytoplasm and vacuole of coleoptile cells of oat, Avena sativa L. cv. Victory. Double labeling was used in experiments with 42K plus 22Na and with 42K plus 36Cl in a complete nutrient solution. At the plasmalemma, according to the Ussing-Teorell flux ratio equation, Na+ is pumped out and Cl is actively transported inward. The results with K+ are less conclusive, but it is probably pumped in. At the tonoplast there is an active inward transport of Na+ and probably of K+, but the status of Cl is uncertain, depending upon whether there is an electrical potential difference between the cytoplasm and vacuole. The results suggest that ion selectivity resides mostly in the plasmalemma. Possible errors in the estimates and interpretations are discussed.  相似文献   

    19.
    Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

    20.
    Summary Effects of anisotonic media on a monolayer of confluent kidney cells in culture (MDCK) were studied by measuring: cell thickness and cross-section changes, ion and amino-acid content and membrane potential. The volume was also determined with cells in suspension. When cells in a monolayer were incubated in hypotonic media, the lateral and the apical membranes were rapidly stretched. Afterwards the lateral membranes returned to their initial state while the apical membranes remained stretched. This partial regulatory volume decrease (RVD) was verified with cells in suspension. RVD was accompanied by a loss of K+, Cl and amino acids, but there was no loss of inorganic phosphate. Also a transient hyperpolarization of the membrane potential was observed, suggesting an increase of the K+ conductance during RVD. Upon restoring the isotonic medium, a regulatory volume increase (RVI) was observed accompanied by a rapid Na+ and Cl increase and followed by a slow recovery of the initial K+ and Na+ content while amino acids remained at their reduced content. A transient depolarization of the membrane potential was measured during this RVI, suggesting that Na+ and Cl conductance could have increased. In hypertonic media, only a small and slow RVI was observed accompanied by an increase in K+ and Cl content but without any change of membrane potential. Quinine partly inhibited RVD in hypotonic media with cells in a monolayer while inhibiting RVD completely with cells in suspension. Incubation during four hours in a Ca2+ free medium had no effect on RVD. Furosemide and amiloride had no effect on RVD and RVI. Volume regulation, RVD or RVI, was not affected by replacing Cl by nitrate. When cells in a monolayer were incubated in a hypotonic K2SO4 medium, no RVD was observed. From these results, it seems that MDCK cells in a confluent monolayer regulate their volume by activating specific ion and amino-acid transport pathways. Selective K+ and Na+ conductances are activated during RVD and RVI, while the activated anion conductance has a low selectivity. The controlling mechanism might not be the free intracellular Ca2+ concentration.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号