首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ouabain-binding and phosphorylation of (Na+ mk+)-ATPase (EC 3.6.1.3) of the plasma membranes from kidney were investigated after treatment with N-ethylmaleimide or oligomycin. Either of these inhibitors brought about the following changes: the phosphoenzyme, formed in the presence of Na+, Mg2+ and ATP became essentially insensitive to splitting by K+ but was split by ADP. One mole of this ADP-sensitive phosphoenzyme bound one mole of ouabain but the enzyme-ouabain complex was less stable than in the native enzyme primarily because the rate of its dissociation increased. Ouabain was bound to the ADP-sensitive phosphoenzyme in the presence of Mg2+ alone and addition of inorganic phosphate enhanced both the rate of formation and the steady-state level of the enzyme-ouabain complex. The inhibitors did not affect the properties of this second type of complex. Both in the native enzyme and in the enzyme treated with the two inhibitors inorganic phosphate enhanced ouabain binding by phosphorylating the active center of the enzyme as shown (a) by mapping the labeled peptides from the enzyme after peptic digestion, (b) by inhibition of this phosphorylation with Na+ and (c) by the 1:1 stoichiometric relation between this phosphorylation and the amount of bound ouabain. Unlike the phosphoenzyme, the binding of ouabain remained sensitive to K+ in the enzyme treated with the inhibitors. K+ slowed ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding either in the presence of Na+, Mg2+ and ATP or of Mg2+ and inorganic phosphate. A higher concentration of K+ was needed to slow ouabain-binding than to stimulate dephosphorylation. This finding is interpreted as being an indication of separate sites for K+ on the enzyme: a site(s) with high K+-affinity which stimulates dephosphorylation, another site(s) with moderate K+-affinity which inhibits ouabain-binding. Inhibitors may enhance formation of the ADP-sensitive phosphoenzyme by blocking interaction between K+ and the site(s) with high affinity.  相似文献   

2.
Interaction of fluorescein isothiocyanate with the (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

3.
The substituted benzimidazole, picoprazole, inhibited the gastric (H+ + K+)-ATPase in a concentration-and time-dependent manner. Half-maximal inhibition of the (H+ + K+)-ATPase activity was obtained at about 2 . 10(-6)M under standard conditions. In addition to the inhibition of ATPase activity, parallel inhibition of phosphoenzyme formation and the proton transport activity were achieved. Radiolabelled picoprazole was found to bind to 100 kDa peptide; this peptide was shown by phosphorylation experiments to contain the catalytic centre of the (H+ + K+)-ATPase. Studies on the (Na+ + K+)-ATPase indicated that this enzyme was unaffected by picoprazole. From the data presented and from other pharmacological studies, it is proposed that this compound inhibits acid secretion at the level of the parietal cell by its ability to inhibit the gastric proton pump, the (H+ + K+)-ATPase.  相似文献   

4.
The (K+ + H+)-ATPase from gastric mucosa has been treated by limited proteolytic digestion with trypsin to study the conformational states of the enzyme. The existence of a K+- and an ATP-form of the enzyme follows from the kinetics of inactivation and from the specific cleavage products. In the presence of K+ the 95 kDa chain is cleaved into two fragments of 56 and 42 kDa, whereas in the presence of ATP fragments of 67 and 35 kDa are formed. When Mg2+ is present during tryptic digestion cleavage products which are specific for both the ATP- and the K+-form of the enzyme are yielded. In analogy to ATP, Mg2+ is able to convert the enzyme from a K+-conformation to a more protected form. Moreover Mg2+ supports the protecting effect of ATP against tryptic inactivation. The K0.5 for ATP is lowered from 1.6 mM (no Mg2+) to 0.2 mM in the presence of 10 mM Mg2+. Mg2+, which in previous studies has been shown to induce a specific conformation, apparently induces a conformation different from the K+-form of the enzyme and has ATP-like effects on the enzyme. In addition it has been found that in the initial rapid phase of the digestion process the K+-ATPase activity is interrupted at a step which is very likely the interconversion of the phosphoenzyme forms E1P and E2P, since neither the K+-stimulated p-nitrophenylphosphatase activity nor the phosphorylation of the enzyme are inhibited in this phase. During the tryptic digestion in the presence of K+ there is a good correlation between the residual ATPase activity and the amount of the catalytic subunit left, suggesting that the latter is homogeneous. After tryptic digestion in the presence of K+, phosphorylation only occurs in the 42 kDa and not in the 56 kDa band. The same experiments in the presence of ATP yield only phosphorylation in the 67 kDa band and not in the 35 kDa band. A provisional model for the structure of the catalytic subunit is given.  相似文献   

5.
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.  相似文献   

6.
Modification of gastric (H+ + K+)-ATPase with pyridoxal 5'-phosphate   总被引:2,自引:0,他引:2  
Pig gastric membrane vesicles enriched in (H+ + K+)-ATPase were covalently modified with pyridoxal 5'-phosphate (PLP). The modification resulted in inhibition of K+-dependent ATP hydrolysis, formation of phosphoenzyme and ATP-driven H+-uptake catalyzed by (H+ + K+)-ATPase. ATP, ADP, and adenyl-5'-yl imidodiphosphate were protective ligands, whereas Mg2+ and K+ were not. Specific PLP-binding of about 4.5 nmol/mg membrane protein was necessary for complete inhibition of the enzyme activity, indicating that the stoichiometry of PLP-binding to the enzyme was about 1:1. Limited proteolysis of the enzyme modified with [3H]PLP by trypsin suggests that PLP specifically modifies the lysine residue located in the 16-kDa fragment of the enzyme cleaved by trypsin. These results suggested that PLP binds to a specific lysine residue in the nucleotide-binding site or a region in its vicinity and inhibits the substrate binding or phosphorylation step of (H+ + K+)-ATPase.  相似文献   

7.
W J Ball 《Biochemistry》1986,25(22):7155-7162
The effects of a monoclonal antibody, prepared against the purified lamb kidney Na+,K+-ATPase, on the enzyme's Na+,K+-dependent ATPase activity were analyzed. This antibody, designated M10-P5-C11, is directed against the catalytic subunit of the "native" holoenzyme. It inhibits greater than 90% of the ATPase activity and acts as a noncompetitive or mixed inhibitor with respect to the ATP, Na+, and K+ dependence of enzyme activity. It inhibits the Na+- and Mg2+ATP-dependent phosphoenzyme intermediate formation. In contrast, it has no effect on K+-dependent p-nitrophenylphosphatase (pNPPase) activity, the interconversion of the phosphoenzyme intermediates, and ADP-sensitive or K+-dependent dephosphorylation. It does not alter ATP binding to the enzyme nor the covalent labeling of the enzyme at the presumed ATP site by fluorescein 5'-isothiocyanate (FITC), but it prevents the ATP-induced stimulation in the rate of cardiac glycoside [3H]ouabain binding to the Na+,K+-ATPase. M10-P5-C11 binding appears to inhibit enzyme function by blocking the transfer of the gamma-phosphoryl of ATP to the phosphorylation site after ATP binding to the enzyme has occurred. In the presence of Mg2+ATP, it also prevents the ATP-induced transmembrane conformational change that enhances cardiac glycoside binding. This uncoupling of ATP binding from its stimulation of ouabain binding and enzyme phosphorylation demonstrates the existence of an enzyme-Mg2+ATP transitional intermediate preceding the formation of the Na+-dependent ADP-sensitive phosphoenzyme intermediate. These results are also consistent with a model of the Na+,K+-ATPase active site being composed of two distinct but interacting regions, the ATP binding site and the phosphorylation site.  相似文献   

8.
The presence of a cation inhibitory site on the dephosphoform of the H+, K+ -ATPase was confirmed by comparing the effects of K+ and NH4+ on overall activity and on phosphorylation and dephosphorylation. Inhibition of ATPase activity was pronounced at high cation/ATP ratios, but NH4+ was much less effective. At 60 mM cation, although the ATPase activity was greater in the presence of NH4+ (17.1 mumol/mg.h) as compared to K+ (5.1 mumol/mg.h), dephosphorylation of preformed phosphoenzyme was faster with K+ (2101 min-1) than with NH4+ (1401 min-1). Increasing K+ concentrations at the cytosolic face of the enzyme, at constant ATP, decreased the rate of phosphorylation from 1343 to 360 min-1 at 25 mM K+. Increasing ATP concentrations in the presence of constant K+ concentrations accelerated ATPase activity and increased the steady-state phosphoenzyme level. Therefore, inhibition by cations was due to cation stabilization of a dephospho form of the enzyme at a cytosolically accessible cation-binding site. ATP promoted cation dissociation from this site. In ion-permeable vesicles, increasing K+ concentrations, at constant ATP, activated and then inhibited ATPase activity, with a K0.5(I) of 22 mM. In intact, ion-impermeable inside-out vesicles, in the presence of valinomycin, ATPase activity increased up to 175 mM K+. Collapse of this potential by the addition of the electrogenic protonophore 3,3',4', 5-tetrachlorosalicylanilide restored the K+ inhibition of ATPase activity. Thus, the cation inhibition of the ATPase activity appears to be voltage-sensitive; and hence, its connection to the voltage sensitivity of acid secretion demonstrated in intact gastric mucosa is discussed.  相似文献   

9.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Although the animal cell (Na+ + K+)-ATPase is composed of two polypeptide subunits, alpha and beta, very little is known about the beta subunit. In order to obtain information about the structure of this polypeptide, the beta subunit has been investigated using proteolytic fragmentation, chemical modification of carbohydrate residues, and immunoblot analysis. The sialic acid moieties on the oligosaccharide groups on the beta subunit of (Na+ + K+)-ATPase were labeled with NaB3H4 after oxidation by sodium periodate, or the penultimate galactose residues on the oligosaccharides were similarly labeled after removal of sialic acid with neuraminidase and oxidation by galactose oxidase. All of the carbohydrate residues of the protein are located on regions of the beta subunit that are found on the non-cytoplasmic surface of the membrane. Cleavage of the galactose oxidase-treated, NaB3H4-labeled beta subunit by chymotrypsin at an extracellular site produced labeled fragments of 40 and 18 kDa, indicating multiple glycosylation sites along the polypeptide. Neither the 40 kDa fragment nor the 18 kDa fragment was released from the membrane by chymotrypsin digestion alone, but after cleavage the 40 kDa fragment could be removed from the membrane by treatment with 0.1 M NaOH. This indicates that the 40 kDa fragment does not span the lipid bilayer. The 40 kDa fragment and the 18 kDa fragment are also linked by at least one disulfide bond. The 18 kDa fragment also contains all of the binding sites found on the (Na+ + K+)-ATPase for anti-beta subunit antibodies. Both the 40 kDa fragment and the 18 kDa fragment were also generated using papain or trypsin to cleave the beta subunit. These data indicate that the beta subunit of (Na+ + K+)-ATPase contains multiple sites of glycosylation, that it inserts into the cell membrane near only one end of the polypeptide, and that one region of the polypeptide is particularly sensitive to proteolytic cleavage relative to the rest of the polypeptide.  相似文献   

11.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

12.
A monoclonal antibody (designated as HK4001) was prepared against hog gastric H+,K(+)-ATPase. It dose-dependently inhibited the H+,K(+)-ATPase activity, formation of the K(+)-sensitive phosphoenzyme, and proton uptake into gastric vesicles. The H+,K(+)-ATPase activity was completely inhibited by addition of the antibody at a molar ratio of 1:2 (antibody/catalytic subunit) at pH 7.8. The maximal inhibition decreased with decrease in pH of the medium (7.8 greater than 7.4 greater than 6.2). The Fab fragment obtained by digestion of the antibody with papain was also inhibitory. The antibody did not inhibit the K(+)-dependent p-nitrophenylphosphatase or the labeling of the enzyme with fluorescein isothiocyanate. It inhibited gastric H+,K(+)-ATPase from rabbits and rats, but did not cross-react with related cation-transport ATPases (Na+,K(+)-ATPase or Ca2(+)-ATPase) or H(+)-ATPase in the multivesicular body. From these and related findings, the antibody was suggested to recognize a highly specific site on the cytosolic surface of H+,K(+)-ATPase. The conformation of the epitope was conserved after treatment with Triton X-100, but not sodium dodecyl sulfate. In addition, judging from the stoichiometry of inactivation of H+,K(+)-ATPase by this antibody, the functional unit of H+,K(+)-ATPase was suggested to be a dimer or a tetramer (not a trimer) of the catalytic unit.  相似文献   

13.
The effect of trypsin on gastric (H+ + K+)-ATPase and K+-phosphatase was studied. Loss of both enzymic activities was biphasic, consisting of a fast and slow phase. Several peptides were produced from the original 105,000-dalton region of the sodium dodecyl sulfate electrophoretic separation, but only two, 87,000 and 47,000 daltons, were labeled following incubation with [gamma-33P]ATP. After a 30-min hydrolysis, 35% of the original peptide remained unaltered and appeared to be a glycoprotein. ATP and ADP abolished the second phase of tryptic inactivation of both activities and only two peptides, of 78,000 and 30,000 daltons, were found on the acrylamide gel in addition to the original 105,000-dalton region, neither of which was labeled by [gamma-33P]ATP. The protection was specific for these nucleotides, AMP, beta, gamma-methylene ATP, TTP, and pNPP being ineffective. Na+ and K+ at high concentrations reduced the rate of loss of activity but no change in the peptides produced was found. The level of phosphoenzyme was increased 2-fold by trypsin treatment, whereas the quantity of K+-sensitive phosphoenzyme remained relatively constant. Thus, the 105,000-dalton region is heterogeneous, consisting of a catalytic subunit (the active site is on a 47,000-dalton fragment), a glycoprotein, and another 105,000-dalton peptide. The action of trypsin is initially to prevent interconversion of a K+-insensitive to a K+-sensitive form of the phosphoenzyme, thus inhibiting hydrolysis.  相似文献   

14.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ +K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5-di(adenosine-5') pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5=116 microM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

15.
Mechanisms of detergent effects on membrane-bound (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
Because the nonionic detergent octaethylene glycol dodecyl ether has been used extensively for studies on active solubilized preparations of (Na+ + K+)-ATPase, we tried to see if the detergent alters the properties of the membrane-bound enzyme prior to solubilization. Addition of the detergent, at concentrations below its critical micellar concentration, to reaction mixtures containing the highly purified membrane-bound enzyme reduced the K0.5 of ATP for (Na+ + K+)-dependent ATPase activity without affecting the maximal velocity or abolishing the negative cooperativity of the substrate-velocity curve. Under these conditions, however, the enzyme was not solubilized as evidenced by complete sedimentation of the membrane fragments containing the enzyme upon centrifugation at 100,000 X g for 30 min. Other nonsolubilizing effects of the detergent included an increase in K0.5 of K+, inhibition of Na+-dependent ATPase with no effect on K0.5 of ATP for this activity, and reductions in the spontaneous decomposition rates of the K+-sensitive phosphoenzyme obtained from ATP and the phosphoenzyme obtained from Pi. The nonsolubilizing effects of the detergent on the purified enzyme were obtained with no detectable lag, were readily reversible, and could be distinguished from its vesicle-opening effects on crude membrane preparations. Several other nonionic and ionic detergents had similar effects on the enzyme. The findings indicate (a) detergent binding to hydrophobic sites on extramembranous segments of enzyme subunits; (b) that occupation of these sites mimics the effects of ATP at a low-affinity regulatory site with no effect on high-affinity ATP binding to the catalytic site; and (c) that in studies on detergent-solubilized preparations, it is necessary to distinguish between the effects of solubilization per se and detergent effects at the regulatory site.  相似文献   

16.
We have previously shown that melittin, a bee venom peptide, potently inhibited the catalytic and transport functions of rabbit gastric (H+ + K+)ATPase. A radioactive photoaffinity analog of melittin, ([125I]azidosalicylyl melittin), labeled the (H+ + K+)ATPase. These results suggested that melittin exerted inhibitory effects through direct interaction with the (H+ + K+)ATPase. In this study we attempt to define the melittin-binding domain of the (H+ + K+)ATPase using conformation-dependent proteolytic fragmentation of [125I]azidosalicylyl melittin-labeled hog gastric (H+ + K+)ATPase. In the presence of KCl (E2 form) the 95,000-Da [125I]-azidosalicylyl melittin-labeled (H+ + K+)ATPase was cleaved by trypsin to a 40,000-Da NH2-terminal tryptic fragment and a 56,000-Da COOH-terminal fragment through cleavage at Arg 454 of the (H+ + K+)ATPase. The 40,000-Da fragment was labeled by [125I]-azidosalicylyl melittin. The 56,000-Da fragment was not labeled. When unmodified (H+ + K+)ATPase was trypsinized in the presence of KCl, and the fragments were then reacted with [125I]azidosalicylyl melittin, similar tryptic fragmentation results were obtained. In the absence of KCl (E1 form), the 56,000- and 40,000-Da fragments did not accumulate. Chymotryptic hydrolysis of [125I]azidosalicylyl melittin-labeled (H+ + K+)-ATPase was very slow in the presence of KCl (E2 form). In the absence of KCl (E1 form), chymotryptic hydrolysis was more rapid, with accumulation of a major 42,000-Da fragment which was radiolabeled. The melittin-binding region on the (H+ + K+)ATPase is N-terminal to Arg 454 of the (H+ + K+)ATPase. This region is known to contain the aspartyl phosphate residue (Asp 385), the site of phosphoenzyme formation on the (H+ + K+)ATPase. Melittin is also known to bind to calmodulin and other proteins. Another known calmodulin-binding peptide with a different sequence but similar structure, Trp-3, (Leu-Lys-Trp-Lys-Lys-Leu-Leu-Lys-Leu-Leu-Lys-Lys-Leu-Leu-Lys-Leu-Gly) also inhibited the (H+ + K+)ATPase and label incorporation by [125I]azidosalicylyl melittin. These Trp-3 results suggested that the (H+ + K+)ATPase contains a peptide-binding domain which is similar to the peptide-binding domains found on other melittin-binding proteins.  相似文献   

17.
Benzamidine, an inhibitor of serine proteases, was used as an affinity ligand for the purification of aspartyl protease from culture filtrate of Rhizomucor miehei. The two step purification protocol (ion-exchange and affinity chromatography) resulted in a homogenous enzyme preparation with seven-fold purification and a final recovery of 22%. The purified enzyme was free of brown pigmentation, a factor inherently associated with the enzyme; it was stable and active at acidic pH (optimum pH 4.1 for proteolytic activity and 5.6 for milk clotting activity). The significant positive characteristic of the enzyme is its comparatively lower thermostability; the enzyme was comparable to calf rennet in its properties of thermostability, milk-clotting to proteolytic activity ratio and sensitivity to CaCl2. Limited protease digestion of the purified enzyme with proteinase K yielded a 20kDa fragment as shown by SDS–PAGE. Native gel electrophoresis of the digest showed an additional peak of activity corresponding to the 20kDa fragment on SDS–PAGE, this fragment retained both milk-clotting and proteolytic activities. It was also inhibited by pepstatin A and hence it is presumed that this fragment contained the active site of the enzyme.  相似文献   

18.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

19.
Trinitrophenyladenosine monophosphate (TNP-AMP) binding to the phosphorylated Ca2+-ATPase of sarcoplasmic reticulum results in manyfold higher fluorescence intensity and longer lifetimes of the nucleotide analogue, as compared to TNP-AMP binding to the nonphosphorylated enzyme. This is observed when the phosphoenzyme intermediate is formed either from ATP or from inorganic phosphate (Pi). An important question is whether the TNP-AMP fluorescence properties can also reflect the kinetically defined interconversions of different phosphoenzyme species during catalysis. We have approached this question by manipulating the phosphorylation conditions in a manner which is known to result in accumulation of different species of the phosphoenzyme, i.e., by variations in pH, substrates, and K+ and Ca2+ concentrations. Decreasing pH or increasing [K+] caused large decreases in fluorescence intensity at a given concentration of TNP-AMP under conditions of phosphorylation with either ATP or Pi. In contrast, low to high intravesicular Ca2+ concentrations had no effect on fluorescence during steady-state turnover. TNP-AMP titrations of the phosphorylated enzyme stabilized in different states revealed that H+ and K+ caused a shift in TNP-AMP binding affinity to the site responsible for high fluorescence enhancement, while maintaining approximately the same maximal fluorescence yield at saturation. The fluorescence lifetimes of TNP-AMP bound to phosphoenzyme did not change with variations in pH, [K+], and substrates. We conclude that the environment of that part of the TNP-AMP binding site which binds the trinitrophenyl moiety undergoes a change upon enzyme phosphorylation resulting in enhanced fluorescence yield; this change is invariant between different phosphoenzyme species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号