首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The controls acting over the timing of DNA replication (S) during the cell cycle have been investigated in the fission yeast Schizosaccharomyces pombe. The cell size at which DNA replication takes place has been determined in a number of experimental situations such as growth of nitrogen-starved cells, spore germination and synchronous culture of wee mutant and wild-type strains. It is shown that in wee mutant strains and in wild type grown under conditions in which the cells are small, DNA replication takes place in cells of the same size. This suggests that there is a minimum cell size beneath which the cell cannot initiate DNA replication and it is this control which determines the timing of S during the cell cycle of the wee mutant. Fast growing wild-type cells are too large for this size control to be expressed. In these cells the timing of S may be controlled by the completion of the previous nuclear division coupled with a requirement for a minimum period in G1. Thus in S. pombe there are two different controls over the timing of S, either of which can be operative depending upon the size of the cell at cell division. It is suggested that these two controls may form a useful conceptual framework for considering the timing control over S in mammalian cells.  相似文献   

2.
Strains of Schizosaccharomyces pombe carrying the wee 1 mutation divide at a reduced cell size compared with the wild-type. In this paper, we investigate the mechanism which determines the time of division and cell size at division in wee 1 strains, using three experimental approaches. The evidence suggests that the wild-type control (a cell size control over entry into nuclear division) is absent in wee 1 strains. Instead, a mechanism operates which comprises a cell size control over the initiation of S phase plus a minimum incompressible period in G2 (“timer”) from S phase to nuclear division. The elements of this second control mechanism exist in wild-type cells, though the control is not normally expressed. In particular, the G2 interval in wild-type cells is normally longer than that in wee 1 cells, but can be reduced to this minimum value by delaying S phase. Thus there are two independent controls over entry into nuclear division, one of which operates in wild-type, and the other in wee 1 cells.  相似文献   

3.
Fifty-two wee mutants that undergo mitosis and cell division at a reduced size compared with wild type have been genetically analyzed. The mutants define two genes, wee1 and cdc2, which control the timing of mitosis. Fifty-one of the mutants map at the wee1 locus, which is unlinked to any known cdc gene. One of the wee1 alleles has been shown to be nonsense suppressible. The 52nd wee mutant maps within cdc2. Previously, only temperature-sensitive mutants that become blocked at mitosis have been found at the cdc2 locus. The simplest interpretation of these observations is that wee1+ codes for a negative element or inhibitor, and cdc2+ codes for a positive element or activator in the mitotic control. The gene dosage of wee1+ plays some role in determining the timing of mitosis, but the gene dosage of cdc2+ has little effect. However, some aspect of the cdc2 gene product activity is important for determining when mitosis takes place. The possible roles of wee1 and cdc2 in the mitotic control are discussed, with particular reference to the part they may play in the monitoring of cell size and cell growth rate, both of which influence the timing of mitosis.  相似文献   

4.
Summary A collection of Schizosaccharomyces pombe mutants has been obtained which restore activity to a nonsense suppressing tRNA sup3–5 whose suppressing function has been inactivated by second site mutations within the sup3–5 gene. These mutants were screened for those that were temperature sensitive in suppressing the opal nonsense allele ade6-704. Some of these map within or close to sup3 itself and others define two allosuppressor genes sal2 and sal3. The temperature sensitive mutants fail to efficiently suppress any other opal nonsense alleles although one mutant, sup3–5, r57, rr2, weakly does so at the low temperature. sal2 and sal3 mutants have a pleiotropic effect on the cell cycle causing a transient or complete blockage of mitosis. This blockage and the allosuppressor phenotypes are both eliminated by the presence of wee mutations in wee1 or cdc2. Mutants in sal2 are allelic with cdc25, a gene required for successful completion of mitosis. It is suggested that sal3 and cdc25 influence the mechanism that links the growth rate of the cell with the initiation of mitosis. Mutants in these genes may disturb tRNA biosynthesis or protein synthesis and this disruption may have an effect on both nonsense suppression and the growth rate control over mitosis.  相似文献   

5.
Size is an important parameter in the characterization of organ morphology and function. To understand the mechanisms that control leaf size, we previously isolated a number of Arabidopsis thaliana mutants with altered leaf size. Because leaf morphogenesis depends on determinate cell proliferation, the size of a mature leaf is controlled by variation in cell size and number. Therefore, leaf-size mutants should be classified according to the effects of the mutations on the cell number and/or size. A group of mutants represented by angustifolia3/grf-interacting factor1 and aintegumenta exhibits an intriguing cellular phenotype termed compensation: when the leaf cell number is decreased due to the mutation, the leaf cell size increases, leading to compensation in leaf area. Several lines of genetic evidence suggest that compensation is probably not a result of the uncoupling of cell division from cell growth. Rather, the evidence suggests an organ-wide mechanism that coordinates cell proliferation with cell expansion during leaf development. Our results provide a key, novel concept that explains how leaf size is controlled at the organ level.  相似文献   

6.
Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.  相似文献   

7.
Cells sense their size and use this information to coordinate cell division with cell growth to maintain a constant cell size within a given population. A model has been proposed for cell size control in the rod-shaped cells of the fission yeast, Schizosaccharomyces pombe. This involves a protein localized to the cell ends, which inhibits mitotic activators in the middle of the cell in a cell size-dependent manner. This protein, Pom1, along with another tip-localized protein, Nif1, have been implicated as direct sensors of cell size controlling the onset of mitosis. Here we have investigated cell size variability and size homeostasis at the G2/M transition, focusing on the role of pom1 and nif1. Cells deleted for either of these 2 genes show wild-type size homeostasis both in size variability analyses and size homeostasis experiments. This indicates that these genes do not have a critical role as direct cell size sensors in the control mechanism. Cell size homeostasis also seems to be independent of Cdc2–Tyr15 phosphorylation, suggesting that the size sensing mechanism in fission yeast may act through an unidentified pathway regulating CDK activity by an unknown mechanism.  相似文献   

8.
eIF4A is a highly conserved RNA‐stimulated ATPase and helicase involved in the initiation of mRNA translation. The Arabidopsis genome encodes two isoforms, one of which (eIF4A‐1) is required for the coordination between cell cycle progression and cell size. A T‐DNA mutant eif4a1 line, with reduced eIF4A protein levels, displays slow growth, reduced lateral root formation, delayed flowering and abnormal ovule development. Loss of eIF4A‐1 reduces the proportion of mitotic cells in the root meristem and perturbs the relationship between cell size and cell cycle progression. Several cell cycle reporter proteins, particularly those expressed at G2/M, have reduced expression in eif4a1 mutant meristems. Single eif4a1 mutants are semisterile and show aberrant ovule growth, whereas double eif4a1 eif4a2 homozygous mutants could not be recovered, indicating that eIF4A function is essential for plant growth and development.  相似文献   

9.
Cell walls, especially secondary cell walls (SCWs), maintain cell shape and reinforce wood, but their structure and shape can be altered in response to gravity. In hardwood trees, tension wood is formed along the upper side of a bending stem and contains wood fiber cells that have a gelatinous layer (G-layer) inside the SCW. In a previous study, we generated nst/snd quadruple-knockout aspens (Populus tremula × Populus tremuloides), in which SCW formation was impaired in 99% of the wood fiber cells. In the present study, we produced nst/snd triple-knockout aspens, in which a large number of wood fibers had thinner SCWs than the wild type (WT) and some had no SCW. Because SCW layers are always formed prior to G-layer deposition, the nst/snd mutants raise interesting questions of whether the mutants can form G-layers without SCW and whether they can control their postures in response to changes in gravitational direction. The nst/snd mutants and the WT plants showed growth eccentricity and vessel frequency reduction when grown on an incline, but the triple mutants recovered their upright growth only slightly, and the quadruple mutants were unable to maintain their postures. The mutants clearly showed that the G-layers were formed in SCW-containing wood fibers but not in those lacking the SCW. Our results indicate that SCWs are essential for G-layer formation and posture control. Furthermore, each wood fiber cell may be able to recognize its cell wall developmental stage to initiate the formation of the G-layer as a response to gravistimulation.  相似文献   

10.
The development of the leaves of 8 mutants ofOenothera hookeri is compared with that of the normal type. All mutants show differences from the controls in many characters, which are interconnected by developmental processes in the sense of a relational pleiotropy (Hadorn). In this paper, quantitative observations on growth characteristics are described. Differences between the mutants and the control do not only exist in the size of mature leaves, but also in the changes of size and form of the leaves during the period of growth.Size and form of leaves are described by arithmetic mean and variance for length and width, and by the length to width ratio. Comparison of growth curves and regression-coefficients as a measure of growth rate of the mutants showed significant differences from wild type. The growth in length and width differs not always in the same direction from the normal.In the mutantsSp-1, gi-2 andb differences in growth curves were found even for leaves, which did not show a deviation in size or form from normal ones.In normal leaves the epidermal cells near the tip of the leaves are smaller than those in the middle part. The cells are smaller in the stemleaves compared with the rosettes. All mutants,gi-2 excepted, show differences in cell size compared with the normal form.The relation of cell size to length and width of the leaves showed that growth by cell division is, in all eight mutants investigated, different from normal.  相似文献   

11.
Cell death and its effect on wing size have been described in some wing mutants of Drosophila hydei. Dead cells in the imaginal discs were localized by Nile-bule and acridine-orange staining. Various Notch (N) alleles, the mutation Costal-nick (Cnk) and the compound N/Cnk show characteristic patterns of cell death in the imaginal wing disc. Some but not all of the structural features of the adult wing can be related to the site of cell death during larval stages. In NAx types, extensive cell death is followed by regenerative growth, invalidating a simple relation between size of the disk and size of the wing. In Nts/Cnk cell death and wing morphology depend on the breeding temperature. From temperature experiments we conclude that cell death starts between day 4 and 5 after egg laying and can be induced by a shift to the restrictive temperature during the critical phase. Patterns of wing incisions and cell death in Nts/Cnk genotypes seem not to be delimited by any of the known compartment boundaries.  相似文献   

12.
Each bacterium has to co‐ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram‐positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi‐functional penicillin‐binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food‐borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials.  相似文献   

13.
《Autophagy》2013,9(4):507-509
Cell growth–the primary determinant of cell size–has an intimate relationship with proliferation; cells divide only after they reach a critical size. Despite its developmental and medical significance, little is known about cellular pathways that mediate the growth of cells. Accumulating evidence demonstrates a role for autophagy–a mechanism of eukaryotic cells to digest their own constituents during development or starvation–in cell size control. Increasing autophagic activity by prolonged starvation, rapamycin treatment inhibiting TOR (target of rapamycin) signaling, or genetic intervention, causes cellular atrophy in worms, flies and mammalian cell cultures. In contrast, we have shown that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes, unc-51/Atg1 and bec-1/Atg6, confers reduced cell size. We argue that physiological levels of autophagy are required for normal cell size, whereas both insufficient and excessive levels of autophagy lead to retarded cell growth. Furthermore, we discuss data suggesting that the insulin/IGF-1 (insulin-like growth factor receptor-1) and TGFβ (transforming growth factor-beta) signaling systems acting as major growth regulatory pathways converge on autophagy genes to control cell size. Thus, autophagy may act as a central regulatory mechanism of cell growth.

Addendum to: Aladzsity I, Tóth ML, Sigmond T, Szabó E., Bicsák B, Barna J, Reg?s A, Orosz L, Kovács AL, Vellai T. Autophagy genes unc-51 and bec-1 are required for normal cell size in Caenorhabditis elegans. Genetics 2007; 177:655-60, DOI: 10.1534/genetics.107.075762  相似文献   

14.
Replication of the F''lac sex factor in the cell cycle of Escherichia coli   总被引:25,自引:0,他引:25  
Summary The timing of replication of an F'lac during the cell cycle of Escherichia coli B/r has been investigated at different growth rates to clarify the relationship of F factor replication to cell division and the replication of the bacterial chromosome.Cells of a lacZ — strain carrying an F'lac were separated according to their ages in an exponentially growing population after the culture was pulse labelled with a radioactive precursor of DNA and pulse induced for the synthesis of -galactosidase. The amount of label incorporated at different cell ages reflects the state of replication of the bacteriial chromosome, while the amount of enzyme synthesized in response to a short period of induction is assumed to reflect the state of replication of the F'lac.The F'lac replicates at a time somewhat more than half way through the cell cycle at all growth rates investigated. This time is clearly distinguishable from the time of initiation of chromosomal replication at some of the growth rates studied, implying the existence of at least some different control elements in the replication of these two replicons.The regulation of F'lac replication has been further studied by following F'lac replication in temperature sensitive mutants, which are defective in the initiation of chromosomal replication at elevated temperatures.  相似文献   

15.
Acetate is present in lignocellulosic hydrolysates at growth inhibiting concentrations. Industrial processes based on such feedstock require strains that are tolerant of this and other inhibitors present. We investigated the effect of acetate on Saccharomyces cerevisiae and show that elevated acetate concentrations result in a decreased specific growth rate, an accumulation of cells in the G1 phase of the cell cycle, and an increased cell size. With the cytostat cultivation technology under previously derived optimal operating conditions, several acetate resistant mutants were enriched and isolated in the shortest possible time. In each case, the isolation time was less than 5 days. The independently isolated mutant strains have increased specific growth rates under conditions of high acetate concentrations, high ethanol concentrations, and high temperature. In the presence of high acetate concentrations, the isolated mutants produce ethanol at higher rates and titers than the parental strain and a commercial ethanol producing strain that has been analyzed for comparison. Whole genome microarray analysis revealed gene amplifications in each mutant. In one case, the LPP1 gene, coding for lipid phosphate phosphatase, was amplified. Two mutants contained amplified ENA1, ENA2, and ENA5 genes, which code for P‐type ATPase sodium pumps. LPP1 was overexpressed on a plasmid, and the growth data at elevated acetate concentrations suggest that LPP1 likely contributes to the phenotype of acetate tolerance. A diploid cross of the two mutants with the amplified ENA genes grew faster than either individual haploid parent strain when 20 g/L acetate was supplemented to the medium, which suggests that these genes contribute to acetate tolerance in a gene dosage dependent manner. Biotechnol. Bioeng. 2009;103: 500–512. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
The genetic location ofwee relative tocya was measured by cotransduction with a Tn5 insertion inilv. These experiments locatedwee at 84.8 min in the standardEscherichia coli map. Mutations incya andwee give rise to morphological changes, coccal morphology incya and short rods inwee, suggesting that both may be involved in the pathways of cell elongation. Addition of cAMP to the cultures reverted thecya but not thewee phenotype. Cells ofE. coli in the absence of thewee gene product were, contrary to what has been described forcya cells, as sensitive to mecillinam as in its presence. These results suggested that the action of Wee on elongation is exerted at a level different from that of adenyl cyclase.  相似文献   

17.
Peroxidase isozyme patterns in the skin of maturing tomato fruit   总被引:10,自引:0,他引:10  
The cessation of tomato fruit growth is thought to be induced by an increase in the activity of enzymes which rigidify cell walls in the fruit skin. Peroxidase could catalyse such wall‐stiffening reactions, and marked rises in peroxidase activity were recently reported in skin cell walls towards fruit maturity. Peroxidase isoforms in the fruit are here analysed using native gel electrophoresis. New isoforms of apparent Mr 44, 48 and 53 kDa are shown to appear in cell walls of the fruit skin at around the time of cessation of growth. It is inferred that these isozymes are present in the cell wall in vivo. Fruit from a range of non‐ripening mutants were also examined. Some of these do not soften or ripen for many weeks after achieving their final size. The new isozymes were found in skin cell walls of mature fruit in each of these mutants, as in the wild‐type and commercial varieties. It is concluded that the late‐appearing isozymes are not associated with fruit ripening or softening, and are probably not ethylene‐induced. They may act to control fruit growth by cross‐linking wall polymers within the fruit skin, thus mechanically stiffening the walls and terminating growth.  相似文献   

18.
Summary Twenty seven recessive temperature sensitive mutants have been isolated in Schizosaccharomyces pombe which are unable to complete the cell division cycle at the restrictive temperature. These mutants define 14 unlinked genes which are involved in DNA synthesis, nuclear division and cell plate formation. The products from most of these genes complete their function just before the cell cycle event in which they are involved. Physiological characterisation of the mutants has shown that DNA synthesis and nuclear division form a cycle of mutually dependent events which can operate in the absence of cell plate formation. Cell plate formation itself is usually dependent upon the completion of nuclear division.  相似文献   

19.
20.
Although many membrane Ser/Thr‐kinases with PASTA motifs have been shown to control bacterial cell division and morphogenesis, inactivation of the Ser/Thr‐kinase PrkC does not impact Bacillus subtilis cell division. In this study, we show that PrkC localizes at the division septum. In addition, three proteins involved in cell division/elongation, GpsB, DivIVA and EzrA are required for stimulating PrkC activity in vivo. We show that GpsB interacts with the catalytic subunit of PrkC that, in turn, phosphorylates GpsB. These observations are not made with DivIVA and EzrA. Consistent with the phosphorylated residue previously detected for GpsB in a high‐throughput phosphoproteomic analysis of B. subtilis, we show that threonine 75 is the single PrkC‐mediated phosphorylation site in GpsB. Importantly, the substitution of this threonine by a phospho‐mimetic residue induces a loss of PrkC kinase activity in vivo and a reduced growth under high salt conditions as observed for gpsB and prkC null mutants. Conversely, substitution of threonine 75 by a phospho‐ablative residue does not induce such growth and PrkC kinase activity defects. Altogether, these data show that proteins of the divisome control PrkC activity and thereby phosphorylation of PrkC substrates through a negative feedback loop in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号