首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although fungi are known to colonize and decompose plant tissues in various environments, there is scanty information on fungal communities on wetland plants, their relation to microhabitat conditions, and their link to plant litter decomposition. We examined fungal diversity and succession on Phragmites australis leaves both attached to standing shoots and decaying in the litter layer of a brackish tidal marsh. Additionally, we followed changes in fungal biomass (ergosterol), leaf nitrogen dynamics, and litter mass loss on the sediment surface of the marsh. Thirty-five fungal taxa were recorded by direct observation of sporulation structures. Detrended correspondence analysis and cluster analysis revealed distinct communities of fungi sporulating in the three microhabitats examined (middle canopy, top canopy, and litter layer), and indicator species analysis identified a total of seven taxa characteristic of the identified subcommunities. High fungal biomass developed in decaying leaf blades attached to standing shoots, with a maximum ergosterol concentration of 548 ± 83 μg g–1 ash-free dry mass (AFDM; mean ± SD). When dead leaves were incorporated in the litter layer on the marsh surface, fungi experienced a sharp decline in biomass (to 191 ± 60 μg ergosterol g–1 AFDM) and in the number of sporulation structures. Following a lag phase, species not previously detected began to sporulate. Leaves placed in litter bags on the sediment surface lost 50% of their initial AFDM within 7 months (k = −0.0035 day–1) and only 21% of the original AFDM was left after 11 months. Fungal biomass accounted for up to 34 ± 7% of the total N in dead leaf blades on standing shoots, but to only 10 ± 4% in the litter layer. These data suggest that fungi are instrumental in N retention and leaf mass loss during leaf senescence and early aerial decay. However, during decomposition on the marsh surface, the importance of living fungal mass appears to diminish, particularly in N retention, although a significant fraction of total detrital N may remain associated with dead hyphae.  相似文献   

2.
The species composition, biomass (measured as algal volumes) and chlorophyll concentration of epipelic algae was studies before (1977) and during (1978–1979) fertilization with phosphorus and nitrogen of Lake Gunillajaure, a small subarctic lake in northern Sweden.
The epipelic biomass, dominated by Cyanophyceae and Bacillariophyceae, was high (5.6–20.1 cm3 m−2) at all depths in the lake with the highest values in the hypolimnion (8–13.7 m). Calculated over mean depth it was 20 times higher than that of the phytoplankton. There was no significant increase in biomass during fertilization and neither did the species composition change. The chlorophyll concentration on the other hand were significantly higher in late 1978 and in 1979 which was probably an effect of the declining light climate caused by a large phytoplankton development in the lake. Constant seasonal biomass and species composition indicate a perennial epipelic community in this lake.  相似文献   

3.
Heterotrophic bacteria and fungi are widely recognized as crucial mediators of carbon, nutrient, and energy flow in ecosystems, yet information on their total annual production in benthic habitats is lacking. To assess the significance of annual microbial production in a structurally complex system, we measured production rates of bacteria and fungi over an annual cycle in four aerobic habitats of a littoral freshwater marsh. Production rates of fungi in plant litter were substantial (0.2 to 2.4 mg C g(-1) C) but were clearly outweighed by those of bacteria (2.6 to 18.8 mg C g(-1) C) throughout the year. This indicates that bacteria represent the most actively growing microorganisms on marsh plant litter in submerged conditions, a finding that contrasts strikingly with results from both standing dead shoots of marsh plants and submerged plant litter decaying in streams. Concomitant measurements of microbial respiration (1.5 to 15.3 mg C-CO2 g(-1) of plant litter C day(-1)) point to high microbial growth efficiencies on the plant litter, averaging 45.5%. The submerged plant litter layer together with the thin aerobic sediment layer underneath (average depth of 5 mm) contributed the bulk of microbial production per square meter of marsh surface (99%), whereas bacterial production in the marsh water column and epiphytic biofilms was negligible. The magnitude of the combined production in these compartments (approximately 1,490 g C m(-2) year(-1)) highlights the importance of carbon flows through microbial biomass, to the extent that even massive primary productivity of the marsh plants (603 g C m(-2) year(-1)) and subsidiary carbon sources (approximately 330 g C m(-2) year(-1)) were insufficient to meet the microbial carbon demand. These findings suggest that littoral freshwater marshes are genuine hot spots of aerobic microbial carbon transformations, which may act as net organic carbon importers from adjacent systems and, in turn, emit large amounts of CO2 (here, approximately 870 g C m(-2) year(-1)) into the atmosphere.  相似文献   

4.
Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.  相似文献   

5.
张艳博  罗鹏  孙庚  牟成香  王志远  吴宁  罗光荣 《生态学报》2012,32(15):4605-4617
为认识放牧对青藏高原东部中生性的高寒草甸草地和半湿生的沼泽草地凋落物分解的影响,在这两种草地上分别设置了围栏和放牧样地,研究了其各自的混合凋落物样品和4个优势物种(发草Deschampsiacaespitos、鹅绒委陵菜Potentilla anserine、木里苔草Carexmuliensis、藏嵩草Kobresiatibetica)凋落物的分解和养分释放动态,这4个优势物种也大致代表了当地沼泽草地生态系统在放牧和气候变暖驱动下逆行演替不同阶段的优势物种类群。结果表明,各优势物种凋落物的分解速率有显著差异;放牧在总体上促进了凋落物的分解,但不同物种的响应有所不同;放牧对凋落物C的释放影响不显著或有抑制作用,但对N、P的释放具有一定促进作用。对各优势物种凋落物分解和养分释放模式的分析表明,群落逆行演替过程中,凋落物分解和C释放加速,可能促进沼泽湿地退化的正反馈效应。草甸草地的退化标志物种鹅绒委陵菜具有较高的凋落物质量和分解速度,反映了中生条件下植物应对牲畜啃食采用"逃避"而非"抵抗"策略的趋向。  相似文献   

6.
Koorem K  Price JN  Moora M 《PloS one》2011,6(10):e26505
The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest--evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species--and litter amount--shallow (4 mm), deep (12 mm) and leachate--on seedling emergence and biomass of three understorey species. The effect of litter amount on seedling emergence was highly dependent on litter type; while spruce needle litter had a significant negative effect that increased with depth, seedling emergence in the presence of hazel broadleaf litter did not differ from control pots containing no litter. Mixed litter of both species also had a negative effect on seedling emergence that was intermediate compared to the single-species treatments. Spruce litter had a marginally positive (shallow) or neutral effect (deep) on seedling biomass, while hazel and mixed litter treatments had significant positive effects on biomass that increased with depth. We found non-additive effects of litter mixtures on seedling biomass indicating that high quality hazel litter can reduce the negative effects of spruce. Hazel litter does not inhibit seedling emergence; it increases seedling growth, and creates better conditions for seedling growth in mixtures by reducing the suppressive effect of spruce litter, having a positive effect on understorey species richness.  相似文献   

7.
Abstract. The floristic effects of river‐borne litter that accumulates in riparian zones may vary in space and time depending on variations in mass and particle size of the deposited litter. To analyse the effects of litter mass and size we applied differentsized litter (natural uncut pieces and powder) to riparian vegetation at different quantities. Vegetation responses were analysed after one season at the community level (total biomass or richness for all species) and species traits (biomass or richness for groups of species). At the community level uncut litter, but not powder, reduced species richness and both uncut and ground litter reduced above‐ground biomass. At the species trait level uncut litter had a stronger effect than powder on species richness and biomass. The only positive effect of litter addition was that powder increased graminoid species richness. The topsoil conditions indicated that the major impact of deposited, river‐borne litter was that it acted as a physical barrier directly preventing established plants from penetrating the litter layer and reducing light and soil temperature.  相似文献   

8.
The effect of seasonal inundation on the decomposition of emergent macrophyte litter (Scolochloa festucacea) was examined under experimental flooding regimes in a northern prairie marsh. Stem and leaf litter was subjected to six aboveground inundation treatments (ranging from never flooded to flooded April through October) and two belowground treatments (nonflooded and flooded April to August). Flooding increased the rate of mass loss from litter aboveground but retarded decay belowground. Aboveground, N concentration decreased and subsequently increased earlier in the longer flooded treatments, indicating that flooding decreased the time that litter remained in the leaching and immobilization phases of decay. Belowground, both flooded and nonflooded litter showed an initial rapid loss of N, but concentration and percent of original N remaining were greater in the nonflooded marsh throughout the first year. This suggested that more N was immobilized on litter under the nonflooded, more oxidizing soil conditions. Both N concentration and percent N remaining of belowground litter were greater in the flooded than the nonflooded marsh the second year, suggesting that N immobilization was enhanced after water-level drawdown. These results suggest different mechanisms by which flooding affects decomposition in different wetland environments. On the soil surface where oxygen is readily available, flooding accelerates decomposition by increasing moisture. Belowground, flooding creates anoxic conditions that slow decay. The typical hydrologic pattern in seasonally flooded prairie marshes of spring flooding followed by water-level drawdown in summer may maximize system decomposition rates by allowing rapid decomposition aboveground in standing water and by annually alleviating soil anoxia.  相似文献   

9.
Heterotrophic bacteria and fungi are widely recognized as crucial mediators of carbon, nutrient, and energy flow in ecosystems, yet information on their total annual production in benthic habitats is lacking. To assess the significance of annual microbial production in a structurally complex system, we measured production rates of bacteria and fungi over an annual cycle in four aerobic habitats of a littoral freshwater marsh. Production rates of fungi in plant litter were substantial (0.2 to 2.4 mg C g−1 C) but were clearly outweighed by those of bacteria (2.6 to 18.8 mg C g−1 C) throughout the year. This indicates that bacteria represent the most actively growing microorganisms on marsh plant litter in submerged conditions, a finding that contrasts strikingly with results from both standing dead shoots of marsh plants and submerged plant litter decaying in streams. Concomitant measurements of microbial respiration (1.5 to 15.3 mg C-CO2 g−1 of plant litter C day−1) point to high microbial growth efficiencies on the plant litter, averaging 45.5%. The submerged plant litter layer together with the thin aerobic sediment layer underneath (average depth of 5 mm) contributed the bulk of microbial production per square meter of marsh surface (99%), whereas bacterial production in the marsh water column and epiphytic biofilms was negligible. The magnitude of the combined production in these compartments (~1,490 g C m−2 year−1) highlights the importance of carbon flows through microbial biomass, to the extent that even massive primary productivity of the marsh plants (603 g C m−2 year−1) and subsidiary carbon sources (~330 g C m−2 year−1) were insufficient to meet the microbial carbon demand. These findings suggest that littoral freshwater marshes are genuine hot spots of aerobic microbial carbon transformations, which may act as net organic carbon importers from adjacent systems and, in turn, emit large amounts of CO2 (here, ~870 g C m−2 year−1) into the atmosphere.  相似文献   

10.
Hemiparasitic plants can substantially change plant community structure; the drainage of host resources has a direct negative effect on host biomass and, as a consequence, promotes non-host biomass production (parasitism pathway); on the other hand, hemiparasitic litter inputs can enhance nutrient cycling which may have an indirect positive effect on both host and non-host biomass production (litter pathway). We evaluated the net effect of both pathways on total shoot biomass (with and without the hemiparasite) and shoot biomass of graminoids, forbs and ericaceous shrubs using a removal experiment in three sites infested with the annual Rhinanthus angustifolius, and three sites infested with the biennial Pedicularis sylvatica. We addressed the potential importance of litter effects by determination of litter quantity and quality, as well as modeling N release during decomposition. In the second year after removing the hemiparasites, total plant biomass at Rhinanthus sites was 24 % higher in weeded plots than in control plots, while weeding had no significant effect at Pedicularis sites. The increase in total biomass following Rhinanthus removal was mainly due to a higher biomass of graminoids. The amount of litter produced by Rhinanthus was only half of that produced by Pedicularis; N contents were similar. The amount of N in the litter was 9 and 30 % of the amount removed by mowing for Rhinanthus and Pedicularis sites, respectively. Within 2 months, about 45 % of the N in both hemiparasitic litter types was released by decomposition. Our results suggest that in addition to the suppression of host biomass due to parasitism, positive litter feedbacks on host and non-host biomass—via an increase in nutrient availability—also affect plant community structure. We propose that, depending on the particular hemiparasite and/or site conditions, these positive litter feedbacks on shoot biomass can compensate for the negative effect of parasitism.  相似文献   

11.
The standing dead phase is an important stage in the decomposition of emergent vegetation in marsh wetlands, yet few studies have examined how intrinsic litter traits constrain rates of standing litter decomposition or fungal colonization across plant tissue types or species. To address broad constraints on the decomposition of standing dead litter, we conducted a systematic survey of emergent standing dead decomposition studies that measured decay rates and/or fungal biomass, and litter % lignin, carbon:nitrogen (C:N) and/or carbon:phosphorus (C:P). Across 52 datasets, litter of low C:N and C:P ratios exhibited increased decomposition rates (r = −0.737 and −0.645, respectively), whereas % lignin was not significantly correlated with decomposition rates (r = 0.149). Mixed-effects models for litter decomposition rates indicated significant effects of litter molar C:N and C:N + lignin as an additive model, with the former providing marginally better support. Litter % lignin, however, was strongly negatively correlated with fungal biomass (r = −0.669), indicating greater fungal colonization of low-lignin litter, and not correlated with C:N (r = −0.337) and C:P (r = −0.456) ratios. The best-supported model predicting fungal biomass was litter molar C:N, with the C:N + lignin additive model also showing significant effects. Fungal carbon-use efficiency (CUE) also had a strong negative correlation with % lignin (r = −0.604), molar C:N (r = −0.323) and C:P (r = −0.632) across datasets. Our study demonstrates the constraining effects that litter stoichiometry and % lignin elicit on decomposition of standing dead litter and fungal colonization, respectively. These findings improve our understanding of biogeochemical cycling and prediction of the fates of C and nutrients in wetlands.  相似文献   

12.
Invertebrate populations and biomass were studied over four years (1978–1981) in a coastal, saline lagoon in eastern England. Both temperature and salinities fluctuated sharply, with salinities as high as 72.4 gl−1. Of 14 taxa recorded, only three occurred in significant numbers. Nereis diversicolor exhibited summer peaks over all four years, but there was a gradual trend of decline. Corophium volutator showed peaks in 1978 and 1979, but was largely absent thereafter. Chironomus salinarius showed a peak in numbers in 1978, but was rare in 1979 and largely absent in the following two years. The peak biomass was more than 4 000 mg m-2 in 1978, but was less than half this in subsequent years, when it consisted mainly of N. diversicolor. Laboratory experiments tended to confirm that high summer salinities were the cause of poor invertebrate success. The controlled ingress of brackish water into the lagoon from the adjacent estuary should result in a greater and more predictable production of invertebrates, which form the food supply of the chicks of an important colony of avocets Recurvirostra avocetta.  相似文献   

13.
The role of salt marshes as nitrogen sink is examined taking into consideration the seasonal variation of above and belowground biomass of Spartina martima and Halimione portulacoides in two marshes from Tagus estuary, Pancas and Corroios, and the degradation rates of belowground litter. Total nitrogen was determined in plant components, decomposing litter and sediment. Biomass was higher in Corroios, the saltier marsh, with 7190 g m−2 y−1 dw of S. maritima and 6593 g m−2 y−1 dw of H. portulacoides and the belowground component contributed to 96% and 90% of total biomass, respectively. In the other marsh, Pancas, belowground biomass contributed to 56% and 76% of total biomass for S. maritima and H. portulacoides, respectively. Litterbag experiment showed that between 25% and 50% of nitrogen is lost within the first month and remained relatively constant in the next four months. Slower decomposition is observed in sediments with higher nitrogen concentration (max. 0.7% N in the saltier marsh). Higher concentrations of N were found in the sediment upper layers. Considering the sediment-root system, most of the nitrogen is stored in the sediment compartment and only about 1–4% of the total N was found in the roots. Considering these results, Tagus salt marshes act as a sink for nitrogen.  相似文献   

14.
银木凋落叶腐解过程对小白菜生长和抗性生理的影响   总被引:2,自引:0,他引:2  
采用盆栽试验,研究了0(CK)、20(A1)、40(A2)和80(A3)g/盆不同量银木凋落叶在土壤中腐解不同时间(30、40、50、60、70 d)后对受体植物小白菜株高、叶面积、生物量及几种抗性生理指标的影响。同时设置补充试验,采用充分浸泡48 h并蒸煮4h,再风干后的银木凋落叶,各处理用叶量同上,观测分析蒸煮后的银木凋落叶在施入土壤后对土壤物理性质和受体植物的影响。结果表明:(1)在未蒸煮的试验中,凋落叶在施入土壤70 d内,显著抑制了小白菜的高生长、叶片伸展和生物量;在低凋落叶量、短时间处理下,小白菜叶片超氧化物歧化酶、过氧化物酶和过氧化氢酶活性有所升高,但处理量增大或处理时间延长时,超氧化物歧化酶和过氧化物酶活性降低,70 d时过氧化氢酶活性随着处理量增大受到显著促进(RI>0);在低凋落叶量、短时间处理下,可溶性糖含量显著上升,随着处理时间的延长和处理量的增加,可溶性糖和可溶性蛋白的含量显著降低;银木凋落叶在土壤中的作用强度随分解时间延长呈先强后弱的变化趋势,高凋落叶量处理产生的效应比低凋落叶量处理快且强,对小白菜的综合抑制效应变化趋势为:A3>A2>A1;60 d后,各处理的某些指标(生物量、超氧化物歧化酶等)的效应明显减弱以及各处理之间效应差异缩小,可能是由于银木凋落叶在土壤中分解释放的有害次生代谢物质已明显减少;(2)在补充试验中,小白菜试验期内各处理间无明显形态差别,70 d时各处理生物量、形态指标之间无显著差异(P>0.05),表明在凋落叶施入量一定的范围内,土壤物理性质并不是影响小白菜生长的主要因素。综合各项指标可以看出,银木凋落叶在土壤腐解过程中可能对小白菜的生长和抗性生理产生了化感作用。  相似文献   

15.
Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co‐occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ.  相似文献   

16.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

17.
为了解香樟(Cinnammum camphora)凋落叶对作物的生长和土壤微生物生物量碳、氮的影响,采用盆栽试验,施用不同添加量的香樟凋落叶,对3种作物莴笋(Lactuca sativa)、茄子(Solanum melongena)和小白菜(Brassica chinensis)的形态指标、生理指标和土壤微生物量C、N...  相似文献   

18.
Feunteun  Eric  Marion  Loïc 《Hydrobiologia》1994,(1):327-344
The fish predation rate by Grey Heron Ardea cinerea was studied during two breeding seasons (1987–88) in the largest European colony at the Lake of Grand-Lieu (Loire-Atlantique, France). The herons' diet was compared to the available fish population of its main feeding area, the marsh of Bourgneuf (16000 ha) which is composed of former salt pans and meadows drained by a dense network of shallow ditches. This study is the first attempt to assess the predation exerted by an ardeid colony on a fish community over such an extensive natural environment. It also provides the first data about the abundance and the structure of fish communities in shallow coastal dyked marshes. For this purpose, two different sampling methods were used according to the water's salinity. In fresh waters, electrofishing was used as the removal method, and density estimates were calculated with Carle & Strub estimator (1978). Fish were caught in randomly selected stations (sections of ditches enclosed by two 5 mm mesh nets). In brackish waters, pools and ditches were drained. The distribution of the herons at the feeding areas was determined by direct observations, by counting flights from the colony, and by radio-tracking. The diet was investigated by observing adult herons on the foraging areas, and by analyzing the prey regurgitations of the young at the nests. The global food consumption was assessed from Marion (1988), according to the birds' activity determined during 5 years of radio-tracking. Altogether, at least 39 species of fish were available in the herons' feeding area (during the reference period, 87–88) and the mean fish biomass was 270 kg per ha of open water, or 30 kg per ha of marsh (open water = 11.2% of the marsh area). The fish community was dominated by eel Anguilla anguilla (145 kg ha–1, 50,8% of the total biomass), and catfish Ictalurus melas (40 kg ha–1, 14%). Except for small and inaccessible species (living in the deepest parts of the marsh), heron diet was very similar to fish species composition of the community occurring in the marsh. The catfish was the species captured most frequently by the heron (45% of the mass), the eel was second with 28% of the mass. The catfish was probably over represented in the diet considering that they are caught in catfish-dumps created by professional fishermen at Grand-Lieu lake, in order to reduce the density of this undesirable species. Inversely, small species such as Gasterosteus aculeatus were not found in the diet whereas they are very numerous in the marsh. On average herons of Grand-Lieu colony catch 1.92 kg of fish per ha of marsh (6% of the fish standing crops in the marsh) during the breeding season, the main predation period.  相似文献   

19.
《Aquatic Botany》2009,90(4):365-371
In this study, the growth, senescence, leaf loss and nutrient dynamics of Juncus maritimus were followed to examine litter decay in a Mediterranean coastal marsh. Decomposition was studied in dead leaves still attached to the plant and in leaves placed in litterbags (detached leaves/litter) on the sediment surface. The dynamics of fungi, meiofauna and epiphytes associated with detached litter were also followed. No significant differences were observed between decay rates in dead leaves attached to plants (0.0017 day−1) and detached leaves (0.0015 day−1) in litter bags. The percentage of ash-free dry weight lost was inversely proportional to the C:N and C:P ratios in plant detritus during decay, indicating N and P limitation for the decomposer community inhabiting decaying J. maritimus litter and uptake of these nutrients from the environment. Water availability and high temperatures on the sediment surface increased the density of meiofauna and epiphyton and decreased fungal biomass during the first 20 days of the experiment. The density of ciliates and nematodes in decomposing litter was inversely related to the C:N ratio and directly related to the percentage of AFDW lost. On the basis of these observations, it was concluded that meiofauna are primary colonizers of J. maritimus leaf litter.  相似文献   

20.
Ladd B  Facelli JM 《Oecologia》2008,157(4):687-696
Litter may indirectly affect competitive interactions. It is not clear whether these changes are additive or non-additive indirect effects. Non-additivity could result from: (1) changes in biomass allocation patterns by competitors towards organs not directly involved in resource acquisition (e.g., longer hypocotyls); (2) changes in the proportion of different functional groups (e.g., grasses and forbs) that possess different competitive abilities; or (3) through priority effects caused by subtle changes in timing of emergence. We used a combination of field and glasshouse experiments in which Eucalyptus obliqua seedlings were grown either with or without leaf litter (grass litter/eucalypt litter), and with or without competitors. Eucalypt species growing in the field and in pots attained more biomass with litter than without when competitors were absent. Competition substantially decreased the biomass of eucalypt seedlings. Competitive intensity was heavily influenced by litter type and was most intense in the presence of grass litter. Litter produced a small change in patterns of biomass allocation in the competing herbaceous vegetation, and there was a slight (marginally non-significant) indication of a change in the proportion of grasses relative to forbs when litter was present. However, when the integral of competitor biomass over time was used to calculate competitive intensity, the combined effects of the experimental factors (litter and competition) became additive, suggesting that the effect of leaf litter on the timing of germination and establishment in the grasses and forbs, relative to that of Eucalyptus seedlings, was the principal mechanism by which leaf litter altered the interaction strength of the species studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号