首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of biomass as a resource for energy production or as a chemical feedstock will increase significantly in the next decades. The amounts of biomass that can be used for non‐food purposes however will be limited and its use will compete with other claims like food and feed production. In order to minimize such food‐feed‐fuel conflicts it is necessary to integrate all kinds of biowaste into a biomass economy. The food industry in particular might be a good candidate for assessment, since it produces inevitably large amounts of biogenic residues each year. The possibilities to use food processing residues for non‐food purposes like bioenergy, biomaterial production, chemical feedstock or as animal feed are therefore discussed in more detail in this paper. It is shown that food processing residues represent a small but valuable biomass fraction that can be exploited in numerous ways. The most promising approach appears to be to design new microbial bioconversion processes as part of more complex biorefinery concepts.  相似文献   

2.
Biorefining agro‐industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy‐focused biorefinery scenarios was performed based on eight selected agro‐industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land‐use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2‐eq.ha?1demanded yr?1 corresponding to 1.2–1.4 t CO2‐eq. t?1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short‐term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro‐industrial residues cannot be considered burden‐free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.  相似文献   

3.
Crop residue resources may affect soil quality, global carbon balance, and stability of crop production, but also contribute to future energy security. This study was performed to evaluate the spatial and temporal variation in residue quantities of field crops in five provinces of North China (NC) and three provinces of Northeast China (NEC). The availability of biomass resources was derived from statistical data on crop yields for all crops on the provincial and even county level. We found that cereals – wheat, maize, and rice – were the biggest resource of crop residue feedstock. The ranking of these crops as a source of biomass for bioenergy is determined by the acreage in each region and the crop‐specific yield. Annually, the average amount of total residue of 83.0 Mt (Mt = Mega tonnes) in NC (16.9 Million ha) comprised 76.6 Mt field residues and 6.4 Mt process residues on an air‐dried basis. The average amount of total biomass residue of 105.7 Mt in NEC (19.8 Million ha) comprised 92.8 Mt field residues and 12.9 Mt process residues. Averaged for 2008, 2009, and 2010, the total standard coal equivalent (SCE) in NC amounted to 46.4 Mt, which comprised 42.4 Mt field residues and of 3.9 Mt process residues. In NEC, the SCE value of 57.0 Mt comprised 49.7 Mt field residues and 7.4 Mt process residues. The temporal availability of field residues was mainly concentrated in the period between July and September, followed by the period between October and December. In the period between July and September, the amount of field residue available amounted to 40.9 and 53.1 Mt in NC and NEC, respectively. An accurate assessment of field residues may guide policy makers and industry to optimize the utilization of the crop residue resource.  相似文献   

4.
Standardised ileal digestibilities (SID) of crude protein and amino acids (AA) originating from 24 different feed ingredients, including 11 feed ingredients produced from soybeans, seven by-products of starch processing, four whey products and two fish meals, were determined in piglets by means of the difference method. For the indispensable AA, the highest SID values were obtained in three out of four whey proteins (SID ≥90% for most indispensable AA), one out of two fish meals (SID ≥86%), soy protein concentrate, hydrolysed soy protein isolate (SID ≥86% for most indispensable AA), and by-products of starch processing (SID ≥84% for most indispensable AA). The lowest SID values were obtained in extruded soybeans and microbially fermented soy protein (SID ≤78% for most indispensable AA), whereas the SID values for high-protein soybean meal were intermediate (SID 80–89% for indispensable AA except for Thr). The SID values in the three enzymatically fermented soy proteins (SID 80–94% for most indispensable AA) were similar to those in high-protein soybean meal and soy protein concentrate. The results of the present study indicate that SID values of AA in feed ingredients for piglets differ considerably from those reported for grower-finisher pigs, thus there may be a need for separate feed tables for piglets.  相似文献   

5.
The West Nusa Tenggara (WNT) province is one of the regions that contribute the most to the production of rice, corn, and cacao. The residues of these crops increase as production increases. The potential availability of the residue was calculated on the basis of the amount of agricultural product and the availability of unutilized residues. The estimated potential energy and collected data were processed and combined with converted factors, such as the yield per hectare and the calorific value, taking into account another purpose, the use of domestic residues for animal feed. Paddy straw, corn straw, and corn cobs had the highest percentage of residue availabilities, 85.91%, 82.26%, and 88.25%, respectively. In addition, the WNT regency has a rich diversity of agricultural residues from superior commodities such as rice, corn, coffee, coconut and cacao. The calculation of the total heating value (THV) of the agricultural residue available reached up to 42.4 PJ. Furthermore, the use of biomass for bioenergy resources is promising, particularly for the WNT region, with the potential for unused agricultural residues. The dependence on unsustainable energy, such as coal and fossil fuel, can be reduced by deploying and developing energy production from biomass use. Therefore, the potential for bioenergy generation and the availability of biomass can be developed for sustainable agriculture and energy management.  相似文献   

6.
The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.  相似文献   

7.
The production of methane (CH4) via the anaerobic digestion of microalgae biomass residues from the biodiesel production process has the potential to meet some of the energy requirements of the primary biomass to fuel conversion process. This paper investigates the practical CH4 yields achievable from the anaerobic conversion of the microalgae residues (as well as codigestion with glycerol) after biodiesel production using both the conventional and in situ transesterification methods. Results demonstrate that the type of lipid extraction solvent utilized in the conventional transesterification process could inhibit subsequent CH4 production. On the basis of actual CH4 production, a recoverable energy of 8.7–10.5 MJ kg?1 of dry microalgae biomass residue was obtained using the lipid extracted and transesterified microalgae samples. On codigesting the microalgae residues with glycerol, a 4–7% increase in CH4 production was observed.  相似文献   

8.
The recession of the water level of Lake Naivasha has incrementally exposed land surfaces creating a chronosequential transect representing durations of 1–30 years of exposure to grazing. This chronosequence provides a unique model to study the effects of land use duration on resource availability and resource base quality. Particularly, pasture quality changes in the riparian land of tropical fresh water lakes have so far not been studied. We assessed the effect of the duration of exposure to grazing on the biomass production, crude protein content and energy quality of pastures in a 4 × 4 latin square design (4 chronosequence positions × 4 soil types). Species composition was recorded and biomass was sampled at monthly intervals from February to August 2011. Soil moisture was recorded using frequency domain reflectometry sensors. Vegetation samples were analyzed for dry matter, nitrogen and metabolizable energy. Increased land use duration favored a shift in species dominance from Pennisetum clandestinum to Cynodon plectostachyus, which was associated with a reduction in dry matter yield and increased plant nitrogen content. All measured variables tended to be higher in soils formed on alluvial than in those formed on lacustrine deposits. Increased soil N and gravimetric moisture content stimulated biomass accumulation. The crude protein yield and metabolizable energy changed with phenological stages of the pasture and declined significantly towards maturity (seed setting of grasses). Continuous grazing and reduced soil moisture content, both during low rainfall and increased distance from the lake shore, affected the composition of pasture grasses as well as forage yield and quality. This may thus differentially affect the suitability of the riparian land as pasture ground and feed resource area for grazing animals.  相似文献   

9.
The production of liquid and gaseous fuels and industrial chemicals from selected biomass by a process known as biorefining is reviewed. Four broad categories of biomass appear to be suitable feedstocks: woody biomass and forest residues, agricultural residues, directly fermentable crop-grown biomass, and municipal solid waste and sewage sludge. Through the development of suppressed methane fermentation techniques, it is possible to produce valuable organic chemicals such as acetic acid and ethyl acetate, and liquid fuel (rather than fuel gas) by exercising various processing alternatives. Thus the entire field of methane fermentation has been broadened. In the petroleum refining industry, it is usually desirable to produce from crude oil an optimal mixture of industrial organic chemicals and fuels, a concept known as coproduction. The biorefining process reviewed appears to be adaptable to this same concept of coproduction using biomass as a feedstock.  相似文献   

10.
蛹虫草饲料添加剂包括蛹虫草子实体、蛹虫草培养残基、蛹虫草及其培养残基提取物、蛹虫草菌固液发酵产物、微生物发酵蛹虫草残基等产品.蛹虫草饲料添加剂含有粗蛋白、粗脂肪、氨基酸等营养成分,以及虫草素、腺苷、多糖等活性成分,在畜禽、反刍动物、水产品等动物养殖中的应用均获得较好的效果.对蛹虫草子实体、蛹虫草培养残基、蛹虫草及其培养...  相似文献   

11.
Solid-substrate fermentations for extraction of protein from pressed alfalfa residues with Aspergillus sp. QM 9994 aspergillus niger QM 877, and Rhizopus nigricans QM 387 were conducted in shake flasks. Upon reimbibing and second pressing, total protein recovery from alfalfa was increased from 47.2% for control samples and up to 64.5% for fermented samples. Analysis of juice from fermented samples indicated the presence of cellulase as well as pectinase activities. Dialysis cultures of cellulase-producing fungi showed that total biomass production and solids consumption were much higher than those of a mutant strain lacking the ability to produce cellulase, indicating significant utilization of cellulosic materials in alfalfa. The biomass yields in the former case ranged from 39–47% based on total solids consumption. Since some of the cellulosic and other carbohydrate constituents in alfalfa may be converted into fungal protein, final alfalfa residues following protein extraction in a commercial process would be less bulky for storage and handing and would be more digestible as a nonruminant animal feed.  相似文献   

12.
AIMS: To evaluate the effect of crude water-soluble arrowroot tea extracts on microbial growth of food-borne pathogens in liquid medium and to confirm the damage to bacterial cells using Transmission Electronic Microscopy (TEM). METHODS AND RESULTS: Inhibition of growth of Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis, Listeria monocytogenes and Staphylococcus aureus was investigated using Brain Heart Infusion (BHI) broth containing 0 (control), 0.63, 1.25, 2.5 and 5.0% (w/v) arrowroot tea. Bacterial cell counts were performed on specific selective agar on days 0, 1, 3 and 5. BHI containing 5.0% arrowroot tea extract showed a 6-7 log suppression of growth for all test strains on days 3 and 5, compared with the control. Even 0.63% arrowroot tea effectively inhibited microbial growth of all test strains on day 5. TEM images of the samples treated with 5.0% arrowroot tea revealed the rupture of cell walls and nonhomogeneous disposition of cytoplasmic materials within treated bacteria. CONCLUSIONS: Crude water-soluble arrowroot tea extract strongly inhibited microbial growth of all test pathogens in liquid medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Water-soluble arrowroot tea extract has the potential to be used directly on foods or as a spray on the surfaces of food handling and processing facilities in order to prevent microbial growth of both Gram-negative and Gram-positive bacteria.  相似文献   

13.
China has a huge resource potential for biomass‐based renewable energy development, but the resources of field residues are still not effectively used. Rice, maize, and wheat made up 89% of staple crop production in China in 2009. A comprehensive assessment of field residues of these three crops is necessary for the development of biomass‐based industries. This research was based on multiyear county‐level data of crop production, area and yield, as well as the crop phenology information from agrometeorological stations. Spatial and temporal analyses were conducted to quantify the spatial patterns, seasonal variations, and temporal trends of the three major field residues. The mean amount of field residue of rice, maize, and wheat was 470.8 Mt/year from 2002 to 2009. Rice residue topped the field residues at 188.5 Mt/year, followed by maize (152.6 Mt/year) and wheat (129.8 Mt/year). The resource supply of field residues varied temporally throughout the season, where peak months are May, June, September, and October. The resources of all three field residues increased from 2002 to 2009, topped by maize residues at a rate of 10.0 Mt/year. Spatially, high production counties had the fast growth rate and a strong positive spatial autocorrelation. The results showed that the intersection area of East and South Central regions has a spatially concentrated residue density and a stable supply for 5 months. The region can be considered as a suitable region for bioenergy development. A better understanding of spatial and temporal distribution of crop residues could facilitate strategic and tactical bioenergy planning.  相似文献   

14.
Seasonal growth characteristics and biomass yield potential of 4 small-leaf, floating, aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated for central Florida’s climatic conditions. Biomass yields were found to be 10.6, 11.3, 16.1, and 32.1 t (dry wt) har?1 yr?1, respectively, for azolla (Azolla caroliniana), giant duckweed (Spirodela polyrhiza), common duckweed (Lemna minor), and salvinia (Salvinia rotundifolia). Operational plant density was in the range of 10–80 g dry wt m?2 for azolla, 10–88 g dry wt m?2 for giant duckweed, 10–120 g dry wt m?2 for common duckweed, and 35–240 g dry wt m?2 for salvinia. Specific growth rate (% increase per day) was maximum at low plant densities and decreased as the plant density increased. Results suggest that small-leaf, floating plants may not be suitable in monoculture biomass production systems because of low biomass yields, but they may be suitable for inclusion in poly culture systems with larger aquatic plants. The high N content (crude protein = 20–33%) of small-leaf,floating plants suggests the use of biomass as animal feed.  相似文献   

15.
16.
微生物发酵青蒿叶和叶渣的研究   总被引:1,自引:0,他引:1  
为扩大青蒿原料的应用途径,延伸青蒿产业链,对青蒿叶和叶渣进行发酵研究.拟开发可用于动物保健的青蒿来源的产品.采用微生物发酵青蒿及青蒿叶渣,检测枯草芽孢杆菌、酿酒酵母菌、植物乳杆菌等菌株发酵青蒿叶和叶渣后其粗蛋白、粗脂肪、粗纤维素以及青蒿素、青蒿乙素、双氢青蒿酸、青蒿酸含量变化.青蒿叶发酵产物及功效成分含量与对照组比较,...  相似文献   

17.
Livestock husbandry in the dry areas of the Mediterranean basin is facing scarcity and fluctuation of feed supply and feed prices. At the same time the local agro-food industry is expanding and its by-products might be used as alternatives to traditional feed resources, but their nutritional value is not well known. Therefore, four by-products typical for the Mediterranean area were tested in vitro (n = 3 per diet or feed), in sacco (n = 6) and in vivo (n = 6) either individually or in a proportion of 0.34 of the total diet. The test feeds (broken lentils, sugar beet pulp, tomato pomace and crude olive cake) were compared to a barley–wheat bran mixture (control). Forage (barley straw) made up proportionately 0.5 of the diet. For all experiments either rumen canulated or intact castrated male Awassi sheep were employed. The thirty sheep used in the in vivo experiment weighed on average 42 kg. The animals were fed 1.1 kg dry matter (DM)/day and had free access to water. Large compositional differences (g/kg DM) between the batches of test feeds used in the present study were found in crude protein (from 79 to 245; for olive cake and broken lentils), neutral detergent fiber (aNDFom; from 283 to 584; for broken lentils and olive cake) and non-fiber carbohydrates (from 109 to 436 for tomato pomace and olive cake and to broken lentils). Two feeds (tomato pomace and olive cake) were rich in ether extract; sugar beet pulp was rich in calcium. Broken lentils had the highest effective degradabilities (ED). Olive cake was lowest in ED of OM and aNDFom (0.39 and 0.32, respectively). Olive cake caused refusals of concentrate (lower proportionate concentrate intake compared with the control, P<0.001). The apparent nutrient digestibility of broken lentils and sugar beet pulp was similar (P<0.001) to the control and lower (P<0.001) for tomato pomace and olive cake. Metabolizable energy (ME; MJ/kg DM) was determined by various ways and always showed a very low value for olive cake (1–2). Broken lentils and sugar beet pulp had ME contents higher (P<0.001) than that of tomato pomace. The study showed that some by-products were promising as alternatives to traditional concentrate ingredients, while others, especially olive cake, might be only used at low levels.  相似文献   

18.
为探讨米老排(Mytilaria laosensis)叶片的潜在利用价值和开发前景,对其叶片的营养成分进行了测定.结果表明,9 a生植株的幼嫩叶片中粗蛋白、粗脂肪和水分含量显著低于成熟叶片;2 a生和10 a生米老排叶片的膳食纤维含量均超过50%,总糖含量为15.04%~16.25%;幼树叶片的维生素C含量[1651m...  相似文献   

19.
Agricultural residues are abundant potential feedstocks for bioconversions to industrial fuels and chemicals. Every bushel of maize (approximately 25 kg) processed for sweeteners, oil, or ethanol generates nearly 7 kg of protein- and fiber-rich residues. Currently these materials are sold for very low returns as animal feed ingredients. Yeast-like fungi are promising biocatalysts for conversions of agricultural residues. Although corn fiber (pericarp) arabinoxylan is resistant to digestion by commercially available enzymes, a crude mixture of enzymes from the yeast-like fungus Aureobasidium partially saccharifies corn fiber without chemical pretreatment. Sugars derived from corn fiber can be converted to ethanol or other valuable products using a variety of naturally occurring or recombinant yeasts. Examples are presented of Pichia guilliermondii strains for the conversion of corn fiber hydrolysates to the alternative sweetener xylitol. Corn-based fuel ethanol production also generates enormous volumes of low-value stillage residues. These nutritionally rich materials are prospective substrates for numerous yeast fermentations. Strains of Aureobasidium and the red yeast Phaffia rhodozyma utilize stillage residues for production of the polysaccharide pullulan and the carotenoid astaxanthin, respectively.  相似文献   

20.
By‐products of agricultural and forestry processes, known as residues, may act as a primary source of renewable energy. Studies assessing the availability of this resource offer little insight on the drivers and constraints of the available potential as well as the associated costs and how these may vary across scenarios. This study projects long‐term global supply curves of the available potential using consistent scenarios of agriculture and forestry production, livestock production and fuel use from the spatially explicit integrated assessment model IMAGE. In the projections, residue production is related to agricultural and forestry production and intensification, and the limiting effect of ecological and alternative uses of residues are accounted for. Depending on the scenario, theoretical potential is projected to increase from approximately 120 EJ yr?1 today to 140–170 EJ yr?1 by 2100, coming mostly from agricultural production. To maintain ecological functions approximately 40% is required to remain in the field, and a further 20–30% is diverted towards alternative uses. Of the remaining potential (approximately 50 EJ yr?1 in 2100), more than 90% is available at costs <10By‐products of agricultural and forestry processes, known as residues, may act as a primary source of renewable energy. Studies assessing the availability of this resource offer little insight on the drivers and constraints of the available potential as well as the associated costs and how these may vary across scenarios. This study projects long‐term global supply curves of the available potential using consistent scenarios of agriculture and forestry production, livestock production and fuel use from the spatially explicit integrated assessment model IMAGE. In the projections, residue production is related to agricultural and forestry production and intensification, and the limiting effect of ecological and alternative uses of residues are accounted for. Depending on the scenario, theoretical potential is projected to increase from approximately 120 EJ yr?1 today to 140–170 EJ yr?1 by 2100, coming mostly from agricultural production. To maintain ecological functions approximately 40% is required to remain in the field, and a further 20–30% is diverted towards alternative uses. Of the remaining potential (approximately 50 EJ yr?1 in 2100), more than 90% is available at costs <10$2005 GJ?1. Crop yield improvements increase residue productivity, albeit at a lower rate. The consequent decrease in agricultural land results in a lower requirement of residues for erosion control. The theoretical potential is most sensitive to baseline projections of agriculture and forestry demand; however, this does not necessarily affect the available potential which is relatively constant across scenarios. The most important limiting factors are the alternative uses. Asia and North America account for two‐thirds of the available potential due to the production of crops with high residue yields and socioeconomic conditions which limit alternative uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号