首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two fully-crossed, three-way, two-by-three-by-three, factorially arranged experiments, female weanling rats were fed a basal diet supplemented with iron at 15 and 45 μg/g, nickel at 0, 5, and 50 μg/g, and copper at either 0, 0.5, and 5 μ/g (Expt. 1) or 0, 0.25, and 12 μg/g (Expt. 2) A gram of basal diet contained in Expt. 1 approximately 16 ng of nickel, 2.3 μg of iron, and 0.47 μg of copper; and in Expt. 2, 20 ng of nickel, 1.3 μg of iron, and 0.39 μg of copper. Expt. 1 was terminated at 11 weeks, and Expt. 2 at 8 weeks because, at those times, some rats fed no supplemental copper and the high level of nickel began to lose weight, or die from heart rupture. The findings demonstrated that relationships are complex among nickel, copper, and iron. Nickel interacted with copper and this interaction was influenced by dietary iron. Signs of copper deficiency were more severe when nickel was supplemented to the diet provided that copper deprivation was neither very severe nor mild. Iron deprivation apparently enhanced the antagonism by exacerbating copper deficiency. Signs of copper deficiency that were made more severe by nickel supplementation were depressed weight gain (Expt. 2), hematocrit (Expt. 1), hemoglobin, and plasma alkaline phosphatase activity; and elevated ratios of heart wt/body wt, kidney wt/body wt, and liver wt/body wt. Because nickel and copper have similar physical and chemical properties, the interactions between those two elements were probably the result, of isomorphous replacement of copper by nickel at various functional sites that interfered with some biological processes.  相似文献   

2.
In two fully crossed, three-way, two by three by three, factorially arranged experiments, female weanling rats were fed a basal diet supplemented with iron at 15 and 45 μg/g, nickel at 0, 5, and 50 μg/g and copper at 0, 0.5, and 5 μg/g (Expt. 1) or 0, 0.25, and 12 μg/g (Expt. 2). Expt. 1 was terminated at 11 weeks, and Expt. 2 at 8 weeks because, at those times, some rats fed no supplemental copper and the high level of nickel began to lose weight, or die from heart rupture. The experiments showed that nickel interacted with copper and this interaction was influenced by dietary iron. If copper deficiency was neither very severe or mild, copper deficiency signs of elevated levels of total lipids and lipid phosphorus in liver and plasma, and cholesterol in plasma, were made more severe by supplemental dietary nickel. Rats in which nickel supplementation exacerbated copper deficiency did not exhibit a depressed level of copper in liver and plasma. Also, although iron deprivation enhanced the interaction between nickel and copper, iron deprivation did not significantly depress the level of copper in liver and plasma. The findings confirmed that, in rats, a complex relationship exists between nickel, copper, and iron, thus indicating that both the iron and copper status of experimental animals must be controlled before data about nickel nutriture and metabolism can be compared among studies.  相似文献   

3.
In three fully crossed, factorially arranged, completely randomized experiments, female weanling rats were fed a basal diet (containing about 10 ng of nickel and 2.3 μg of iron/g) supplemented with graded levels of nickel and iron. Iron was supplemented to the diet in experiment 1 at levels of 0, 25, 50, and 100 μg/g as a mixture of 40% FeSO4·nH2O and 60% Fe2(SO4)3·nH2O; in experiment 2 at levels of 0, 12.5, 25, 50, and 100 μg/g as Fe2(SO4)3·nH2O; in experiment 3 at levels of 0, 25, and 50 μg/g as either the mixture of ferric-ferrous sulfates, or as ferric sulfate only. Nickel as NiCl2·3H2O was supplemented to the diet in experiment 1 at levels of 0, 5, and 50 μg/g; in experiment 2 at levels of 0 and 50 μg/g; and in experiment 3 at levels of 0 and 5 μg/g. Regardless of dietary nickel, rats fed no supplemental iron exhibited depressed iron content and elevated copper, manganese, and zinc contents in the liver. Nickel and iron did not interact to affect iron, manganese, and zinc in liver. Liver copper was inconsistently affected by an interaction between nickel and iron. Nickel deprivation apparently accentuated the elevation of the copper level in livers of severely iron-deficient rats. Experiment 3 showed that the form of dietary iron altered the effect of nickel deprivation on the iron content of the liver. When only ferric sulfate was supplemented to the diet, liver iron content was depressed in nickel-deprived rats. On the other hand, when the ferric-ferrous mixture was supplemented to the diet, nickel deprivation apparently elevated the iron content in the liver. The findings support the views that (1) parameters that are affected by an interaction between nickel and iron are limited in factorially arranged experiments, and (2) the form and level of dietary iron markedly influence the effect of nickel deprivation in the rat.  相似文献   

4.
In two fully-crossed, two-factor, completely randomized experiments, female weanling rats were fed a basal diet (containing about 10 ng of nickel and 2.3 μg of iron/g) supplemented with graded levels of nickel and iron. Iron was supplemented to the diet in experiment 1 at levels of 0, 25, 50, and 100 μg/g as a mixture of 40% FeSO4·nH2O and 60% Fe2(SO4)3·nH2O and in experiment 2 at levels of 0, 12.5, 25, 50, and 100 μg/g as Fe2(SO4)3·nH2O. In both experiments, nickel was supplemented to the diet at levels of 0, 5, and 50 μg/g as NiCl2·3H2O. Regardless of dietary nickel, rats fed no supplemental iron exhibited depressed levels of plasma phospholipids and elevated levels of liver total lipids. Nickel deprivation elevated plasma and liver total lipids in rats fed supplemental ferric sulfate only. When dietary iron was supplied as a ferric-ferrous sulfate mixture, nickel deprivation depressed plasma, and did not affect liver total lipids. However, within each experiment nickel and iron did not interact to affect plasma and liver total lipids or phospholipids. The findings suggest that the effect of dietary nickel on plasma and iver lipids of rats is influenced by the form of dietary iron.  相似文献   

5.
The interaction among arsenic, zinc, and arginine was studied in chicks using two fully crossed, three-way, two-by-two-by-two experiments. Arsenic at levels of 0 and 2 μg/g zinc at levels of 2.5 (zinc-deficient) and 25 (zinc-adequate) μg/g, and arginine at levels of 0 and 16 mg/g were supplemented to the diet. After 28 d in both experiments, growth was depressed in chicks fed diets either supplemented with arginine or deficient in zinc. Arsenic deprivation depressed growth of chicks fed diets containing the basal level of arginine and 25 μg supplemental Zn/g. Arsenic deprivation had little or no effect on growth of zinc-deprived chicks fed diets containing the basal level of arginine, or in zinc-deprived or zinc-adequate chicks fed supplemental arginine. Zinc-deficiency elevated urea in plasma and arginase activity in kidney. Those elevations, however, were more marked in arsenic-supplemented than in arsenic-deprived chicks. Also, plasma urea and kidney arginase activity were markedly elevated in chicks fed supplemental arginine; the elevations were more marked in zinc-deficient chicks. These findings support the concept that arsenic has a physiological role, associated with zinc, that can influence arginine metabolism in the chick.  相似文献   

6.
The interaction between nickel and iron was confirmed in rat metabolism. In a fully-crossed, two-way, three by four, factorially designed experiment, female weanling rats were fed a basal diet supplemented with iron at 0, 25, 50, and 100 μg/g and with nickel at 0, 5, and 50 μg/g. The basal diet contained about 10 ng of nickel and 2.3 μg of iron/g. After nine weeks, dietary iron affected growth, hematocrit, hemoglobin, plasma cholesterol, and in liver affected total lipids, phospholipids, and the contents of copper, iron, manganese, and zinc. By manipulating the iron content of the diet, effects of dietary nickel were shown in rats that were not from dams fed a nickel-deprived diet. Nickel affected growth, hematocrit, hemoglobin, plasma alkaline phosphatase activity, plasma total lipids, and in liver affected total lipids, and the contents of copper, manganese, and nickel. The interaction between nickel and iron affected hematocrit, hemoglobin, plasma alkaline phosphatase activity, and plasma phospholipids, and in liver affected size, content of copper, and perhaps of manganese and nickel. In severely iron-deficient rats, the high level of dietary nickel partially alleviated the drastic depression of hematocrit and hemoglobin, and the elevation of copper in liver. Simultaneously, high dietary nickel did not increase the iron level in liver and was detrimental to growth and appearance of severely iron-deficient rats. In nickel-deprived rats fed the borderline iron-deficient diet (25 μg/g) hematocrit and hemoglobin also were depressed. However, 5 μg Ni/g of diet were just as effective as 50 μg Ni/g of diet in preventing those signs of nickel deprivation. The findings in the present study suggested that nickel and iron interact with each other at more than one locus.  相似文献   

7.
Antagonistic interactions between silicon and aluminum occur in living organisms. Thus, an experiment was performed to ascertain whether high dietary aluminum would accentuate the signs of silicon deprivation in rats and conversely whether silicon deprivation would accentuate the response to high dietary aluminum. The experiment was factorially arranged with two variables: silicon as sodium metasilicate, 0 or 40 μg/g diet, and aluminum as aluminum citrate, 0 or 500 μg/g diet. After 9 wk, body weights and plasma urea nitrogen were higher and plasma concentrations of threonine, serine, glycine, cystine, and methionine were lower in silicon-adequate than silicon-deprived rats. High dietary aluminum significantly decreased plasma phenylalanine. An interaction between aluminum and silicon affected plasma triglyceride, cholesterol, and phosphorus concentrations. High dietary aluminum decreased these variables when silicon was absent from the diet, but increased them when silicon was present. Skull iron and silicon concentrations were decreased and iron and zinc concentrations in the femur were increased by the addition of 500 μg Al/g diet. High dietary aluminum decreased tibia density in silicon-adequate rats, but increased tibial density in silicon-deprived rats. The findings indicate that in rats, high dietary aluminum can affect the response to silicon deprivation and dietary silicon can affect the response to high dietary aluminum.  相似文献   

8.
The level and/or form of dietary iron, dietary nickel, and the interaction between them affected the trace element content of rat liver. Livers were from the offspring of dams fed diets containing 10–16 ng, or 20 μg, of nickel/g. Dietary iron was supplied as ferric chloride (30 μg/g) or ferric sulfate (30 μg, or 60 μg). In nickel-deprived rats fed 60 μg of iron/g of diet as ferric sulfate, at age 35 days, levels of iron and zinc were depressed in liver and the level of copper was elevated. At age 55 days, iron was still depressed, copper was still elevated, but zinc also was elevated. In rats fed 30 μg of iron/g of diet as ferric chloride, liver iron content was higher in nickel-deprived than in nickel-supplemented rats at 30, but not at 50, days of age. Also manganese and zinc were lower in nickel-deprived than in nickel-supplemented rats at age 35 days if their dams had been on experiment for an extended period of time (i.e., since age 21 days). Thus, the levels of copper, iron, manganese, and zinc in liver were affected by nickel deprivation, but the direction and extent of the affects depended upon the iron status of the rat.  相似文献   

9.
Four experiments were done to characterize the interactions of copper, iron, and ascorbic acid with manganese in rats. All experiments were factorially arranged Dietary Mn concentrations were less than 1 micrograms/g (Mn0) and 50 micrograms/g (Mn+). Dietary Cu was less than 1 mg/g (Cu0) and 5 micrograms/g (Cu+); dietary Fe was 10 micrograms/g (Fe10) and 140 micrograms/g (Fe140). Ascorbic acid (Asc) was not added to the diet or added at a concentration of 10 g/kg diet. Experiment 1 had two variables, Mn and Cu; in Experiment 2, the variables were Mn and Asc. In Experiment 3, the variables were Mn, Cu, and Asc; in Experiment 4, they were Mn, Cu, and Fe. Definite interactions between Mn and Cu were observed, but they tended to be less pronounced than interactions between Mn and Fe. Cu depressed absorption of 54Mn and accelerated its turnover. In addition, adequate Cu (Cu+), compared with Cu0, depressed liver, plasma, and whole blood Mn of rats. Absorption of 67Cu was higher in animals fed Mn0 diets than in those fed Mn+. Ascorbic acid depressed Mn superoxide dismutase activity and increased Cu superoxide dismutase activity in the heart. The addition of ascorbic acid to the diet did not affect Mn concentration in the liver or blood. Absorption of 54Mn was depressed in rats fed Fe140 compared with those fed Fe10. Interactions among Fe, Cu, and Mn resulted in a tendency for Mn superoxide dismutase activity to be lower in rats fed Fe140 than in rats fed Fe10. Within the physiologic range of dietary concentrations, Mn and Cu have opposite effects on many factors that tend to balance one another. The effects of ascorbic acid on Mn metabolism are much less pronounced than effects of dietary Cu, which in turn affects Mn metabolism less than does Fe.  相似文献   

10.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

11.
The effects of severe and moderate iron deficiency upon the antibody response to influenza virus were investigated in rats. Three groups of weanling male Wistar rats were fed one of two iron-deficient diets (5 mg and 15 mg iron/kg diet) or a normal iron-containing diet (35 mg iron/kg diet). A group of individually pair-fed rats was introduced with the low iron-consuming rats. The effects of the diets upon various iron status parameters were followed during the 4th, 5th, 6th, and 7th week of diet. After 4 weeks of feeding different diets, an intraperitoneal injection of inactivated influenza virus A/New Jersey/76 was performed and a recall injection was done at 5 weeks. Primary and secondary antibody responses were assayed. Rats were sacrificed at 7 weeks of diet. After 4 weeks of feeding different diets, the rats fed the 5 mg iron/kg diet were severely anemic and rats fed 15 mg iron/kg diet were moderately iron-deficient, as shown by their iron status parameters. Growth was delayed in anemic and matched pair-fed rats. A primary antibody response was almost nonexistent in all groups. Secondary antibody titers were significantly weaker in anemic rats than in ad libitum controls, but were not different from those of pair-fed rats. This response was similar in moderately iron-deficient, ad libitum, and pair-fed rats. These results show that antibody synthesis in response to the influenza virus vaccine is preserved in moderate iron deficiency but is reduced in severe anemia. The reduction in energy consumption associated with severe iron deficiency in the rat could play a part in the altered humoral response.  相似文献   

12.
Two 42-d experiments were conducted with weanling male rats to study interactions between nickel and copper. In Experiment 1, a low-copper basal diet was supplemented with copper at 0 or 30 ppm and nickel at 0 or 30 ppm. Copper was added in Experiment 2 to a basal copper-deficient diet at a level of 0 or 15 ppm and nickel was supplemented at 0, 15, or 225 ppm. Responses to dietary nickel were dependent upon copper nutriture and experimental duration. Nickel had little effect on growth during the first 21 d of either study when added at low levels (15 or 30 ppm) to copper-deficient diets. Nickel supplementation depressed gains between 21 and 42 d in rats fed copper-deficient, but not copper-adequate, diets. Hematocrits and hemoglobin concentrations were not significantly affected by dietary nickel at 21 d. Nickel supplementation decreased hematocrits and hemoglobin values in copper deficient rats at 42 d in Experiment 1, but not in Experiment 2. Absorption of copper apparently was not reduced by nickel, since tissue copper concentrations were generally not decreased by increasing dietary nickel. Nickel supplementation increased lung and heart copper concentrations in Experiment 2. Liver iron was not affected by nickel, but spleen iron concentrations were reduced by nickel supplementation in copper-deficient rats in Experiment 2. The present studies suggest that nickel acts antagonistically to copper in certain biological processes.  相似文献   

13.
An experiment with rats was conducted to determine whether silicon deprivation affects the acute-phase immune response to an endotoxin challenge. Weanling female rats were assigned to two weight-matched groups of 24; one group was fed a basal diet containing about 1.9 µg Si/kg; the other group was fed the basal diet supplemented with 35 µg Si/kg as arginine silicate inositol complex. After being fed their respective diets for 8 weeks, 12 rats in each group were injected subcutaneously with 1 mg lipopolysaccharide (LPS)/kg body weight; the other 12 rats in each group were injected with deionized water. Two hours after injection, the rats were anesthetized with ether for collection of blood (for plasma), liver and femurs, and then euthanized by decapitation. LPS injection decreased total white blood cell, lymphocyte, monocyte, eosinophil, and basophil counts by 80–90%, but did not affect neutrophil counts. LPS injection also increased plasma tumor necrosis factor-α and osteopontin and decreased plasma hyaluronic acid. Silicon deprivation did not significantly affect any of these responses to LPS. Silicon in liver and silicon, iron, and zinc in femur were increased by LPS injection only in silicon-deprived rats. Silicon deprivation also increased monocyte counts and osteopontin and decreased femur zinc in rats not injected with LPS. The findings indicate that silicon deprivation does not affect the acute-immune phase decrease in inflammatory cell numbers and increase in inflammatory cytokines in response to an endotoxin challenge. Silicon deprivation, however, apparently causes slight chronic inflammation and might influence inflammatory cell proliferation in the chronic-phase inflammatory response.  相似文献   

14.
The effects of dietary composition on lipids in serum and in liver of rats fed with a cystine- excess diet were investigated.

When starch was used as the carbohydrate source, the addition of excess-cystine caused an increase in serum cholesterol and phospholipids, and hepatomegaly. Phospholipids in serum of rats fed with a cystine-excess diet containing 5% corn oil were higher than those with a cystine-excess diet that was low in corn oil (0.1 %). The addition of konjac mannan and pectin prevented hypercholesterolemia, and the rise in phospholipids in serum was prevented by the addition of konjac mannan.

Liver cholesterol (mg/liver/100 g of body wt.) increased in rats fed with a cystine-excess diet.

The addition of excess cystine to a diet containing sucrose as the carbohydrate source resulted in a marked increase of cholesterol in serum and liver, and a decrease of serum triglycerides.

The replacement of starch by sucrose in the cystine-excess diet increased liver cholesterol.

Lipids, cholesterol, phospholipids and triglycerides in the liver, but not phospholipids, when expressed as mg per g of liver for rats fed with the diets containing sucrose, increased when compared to those for rats fed with the diets containing starch. In contrast, serum triglycerides increased.  相似文献   

15.
The influence of dietary copper, iron, and ascorbic acid on iron utilization was examined in a 2×2×2 factorial experiment. Male Sprague-Dawley weanling rats were fed copper-deficient (Cu-, 0.42 μg Cu/g) or copper-adequate (Cu+, 5.74 μg Cu/g) diets that contained one of two levels of iron (38 or 191μg Fe/g) and ascorbic acid (0 or 1% of the diet). These eight diets were fed for 20 d, and rats received an oral dose of 4 μCi iron-59 on d 15. Compared to Cu+ rats, the Cu− rats had 27% lower hemoglobin levels with 45, 59, and 65% lower cytochrome c oxidase (CCO) activities in the liver, heart, and bone marrow, respectively (p<0.0001). High dietary iron or ascorbic acid did not alter hemoglobin in Cu+ rats. However, hemoglobin was 23% lower in Cu− rats fed the highest, rather than the lowest levels of iron and ascorbic acid. Liver CCO was decreased (p<0.02) in Cu− rats fed high iron. Among Cu− rats, ascorbic acid did not influence CCO but decreased hemoglobin by 17% (p<0.001), reduced the percentage of absorbed iron-59 in the erythrocytes by 91% (p<0.05) and depressed the percentage apparent absorption of iron (p<0.05). These results suggest that the effects of elevated dietary iron and ascorbic acid on iron utilization are influenced by copper status.  相似文献   

16.
Effects in rats of iron on lead deprivation   总被引:1,自引:0,他引:1  
In two fully crossed, two-factor experiments, F1 generation male rats were fed a basal diet supplemented with lead (lead acetate) at 0 or 2 micrograms/g and iron (ferric sulfate) at 50 or 250 micrograms/g (Experiment 1). Supplements in Experiment 2 were lead at 0 or 1 micrograms/g and iron at 50, 250, or 1000 micrograms/g. After 28 or 50 d in Experiment 1, and 35 d in Experiment 2, a relationship between lead and iron was found. Body weight was lower in low-lead than lead-supplemented 28-d-old rats regardless of dietary iron, whereas hematocrit and hemoglobin were lower in low-lead than lead-supplemented rats fed 50 micrograms iron/g diet. A similar finding was obtained with hematocrit and hemoglobin in 35-d-old rats. Dietary lead did not affect rats fed 250 or 1000 micrograms iron/g diet. Also, feeding low dietary lead did not affect 50-d-old rats regardless of dietary iron. Liver and bone concentrations of lead were markedly affected by dietary lead and iron. The concentration of lead in liver and bone was lower in low-lead than lead-supplemented rats. Compared to rats fed 50 micrograms iron/g diet, rats fed 250 micrograms iron/g diet exhibited a decreased lead concentration in liver and bone. This decrease was accentuated by lead supplementation. The findings suggest that lead acted pharmacologically to affect iron metabolism in rats.  相似文献   

17.
Five groups of individually housed albino rats (n = 7 each, initial average weight = 42 g) were fed diets based on corn starch and casein over a 4-week period. All diets were supplemented with 35 mg/kg of iron from FeSO4 x 7 H2O. Group I (control) was fed the basal diet free of phytic acid (PA) and phytase. By replacing corn starch by 7.5 g (groups II and IV) and 15 g phytic acid (groups III and V) from sodium phytate per kg diet, molar PA/iron ratios of 18 and 36 were obtained. In groups IV and V, 1000 U phytase from Aspergillus niger per kg diet were added. Food conversion efficiency ratio and growth rate as well as iron in plasma and spleen, hemoglobin, red blood cell count and erythrocyte zinc protoporphyrin were not influenced by the different dietary treatments. Dietary phytate reduced apparent iron absorption in groups II and III. Furthermore hematocrit, transferrin saturation and iron concentration in liver and femur were lowered in rats fed diets with PA, while total and latent iron-binding capacity of plasma increased. Microbial phytase supplementation (groups IV and V) partly counteracted the antinutritive effects of phytic acid on iron availability.  相似文献   

18.
Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2×2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 μg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 μg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

19.
An experiment was performed to ascertain whether changing the dietary intake of two substances, cystine and margaric acid (heptadecanoic acid), that affect the flux through pathways involving the two vitamin B12-depednent enzymes, methionine synthase and methylmalonyl-CoA mutase, would affect the interaction between nickel and vitamin B12. Rats were assigned to treatment groups of six in a fully crossed, four-factorial arrangement. The independent variables, or factors, were: per kg of fresh diet, nickel analyzed at 25 and 850 μg; vitamin B12 supplements of 0 and 50 μg; margaric acid supplements of 0 and 5 g; andl-cystine supplements of 0 and 12 g. The diet without cystine was marginally deficient in sulfur amino acids. Nickel affected growth, liver wt/body wt ratio (LB/BW), and a number of variables associated with iron, calcium, zinc, copper, and magnesium metabolism. Most of the effects of nickel were modified by the vitamin B12 status of the rat. In numerous cases, the interaction between nickel and vitamin B12 was dependent on, or altered by, the cystine or margaric acid content of the diet. Thus, the findings showed that the extent and the direction of changes in numerous variables in response to nickel deprivation varied greatly with changes in diet composition. These variables include those previously reported to be affected by nickel deprivation, including growth and the distribution or functioning of iron, calcium, zinc, copper, and magnesium. The findings also support the hypothesis that nickel has a biological function in a metabolic pathway in which vitamin B12 is important.  相似文献   

20.
An experiment was performed to determine the effect of diethyl maleate (DEM), and in vivo depletor of glutathione, on the response of male and female rats to arsenic deprivation. A 2×2×2 factorially arranged experiment used groups of six weanling Sprague-Dawley rats. Dietary variables were arsenic at 0 or 0.5 μg/g and DEM at 0 or 0.25%; the third variable was gender. Animals were fed for 10 wk a casein-ground corn based diet that contained amounts of calcium, phosphorus, and magnesium similar to the AIN-76 diet. DEM supplementation increased blood arsenic in both male and female rats; female rats had the greatest amount of arsenic in whole blood. Although female rats in general had a lower concentration of glutathione in liver, those fed no supplemental DEM, regardless of their arsenic status, had the lowest amounts. Compared to males, female rats had a lower activity of liver glutathione S-transferase (GST). Arsenic deprivation decreased, and DEM supplementation increased liver GST activity in both male and female rats. Lung GST activity was also increased by DEM supplementation in male, but not female, rats. The most striking finding of the study was that compared to males, females had extremely elevated kidney calcium concentrations, and that the elevation was exacerbated by arsenic deprivation. DEM supplementation also exacerbated the accumulation of calcium in the kidney of the female rats. The response of the rat to both DEM and arsenic was, for many variables, dependent on gender. This gender dependence may be explained by the differences in methionine metabolism between male and female rats. Thus, arsenic deprivation apparently can manifest itself differently depending on gender.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号