首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study in 2009 was to examine whether levels of cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb) and chromium (Cr) were higher in the leaves than in the stems of a submerged aquatic plant Ceratophyllum demersum in Anzali wetland. Cadmium, Pb and Cr concentrations were highest in the leaves. The mean concentrations of Cd and Cr in the leaves at all the sampling sites ranged between 0.94–1.26 μg g?1 and 1.03–2.71 μg g?1, respectively. Lead also had its highest concentrations in the leaves. The mean concentration of Pb in the leaves at all sampling sites ranged between 7.49–11.88 μg g?1. Copper and Zn concentrations were highest in the stems. The mean concentrations of Cu and Zn in the stems at all sampling sites ranged between 10.79–17.91 μg g?1 and 19.89–40.01 μg g?1, respectively. Cadmium and Pb concentrations were higher in the leaves than in the stems, while Zn concentration was higher in the stems than in the leaves. Accumulation of Cu and Cr in the organs of C. demersum was in descending order of leaf ~ stem, since there was no significant difference between their mean concentrations in the leaves and stems.  相似文献   

2.
To investigate heavy metal accumulation in soils and evaluate health risk through maize consumption, a total of 196 soils and 55 maize samples were collected from Yushu, China, one of the most important maize production bases. The mean contents of Cd, Cr, Cu, Zn and Pb were 0.119, 56.51, 19.21, 70.58, and 34.42 mg kg?1 for soils and were 0.014, 0.68, 1.33, 17.15 and 0.02 mg kg?1 for maize, respectively. The contents of Cr, Cu, Zn and Pb in all soil and maize samples did not exceed safety thresholds, but the percentages of Cd content above guideline values of Chinese Environmental Quality Standards for Soil and maximum permissible limits for maize were 6.6% and 1.8%, respectively. The spatial distribution and correlation analysis suggested that Cr and Cu in soil were of lithogenic origin, while Zn and Pb were associated with coal combustion exhausts and chemical fertilizer application. The main source of Cd may be phosphate fertilizer application. The average target hazard quotients were all less than 1 and the average hazard index for adults was 0.065, indicating that there was not a potential health risk through maize.  相似文献   

3.
In this study, the content characteristics, comprehensive pollution assessment, and morphological distribution characteristics of heavy metals (Mn, Cd, Cr, Pb, Ni, Zn, and Cu) were researched based on the processes of field investigation, sample collection, and experimental analysis. Results showed that the mean concentrations of Mn, Pb, Cr, Cu, Cd, Zn, and Ni in surface soils were 522.77, 22.56, 55.10, 25.41, 0.25, 57.02, and 48.47 mg kg?1, respectively. The surface soil from Sunan mining area was contaminated by Cu, Cd, and Ni in different degrees, and high CV values of Cd, Zn, Pb, and Ni were influenced by local human activities possibly. The evaluation results suggested that the mean Igeo values were in the sequence of Cd (0.657) > Ni (0.052) > Cu (?0.293) > Mn (?0.626) > Zn (?0.761) > Cr (?0.884) > Pb (?0.899). Besides, Cd was the most significant potential risk factor among all elements. Nevertheless, the Cd of bioavailable speciations with higher proportion had stronger migration and toxicity, and was more easier to be absorbed and enriched than other elements by some crops (e.g., vegetables, rice), and being at a relatively higher potential ecological risk in soil.  相似文献   

4.
Contamination of soils by heavy metals due to urbanization increases various environmental concerns. The objective of this research was to determine the potential sources of heavy metals in agricultural soils in the vicinity of a small-scale industrial area and to assess their environmental impacts. Soil samples were obtained from 15 different locations near a small industrial area in the Çanakkale province of Turkey. Heavy metal (Cd, Co, Cu, Ni, Pb, Zn) contents of soil samples were determined with four different geochemical fractions via a sequential extraction procedure. The results revealed that pseudo-total heavy metal concentrations were ordered in decreasing order as Zn > Pb > Cu > Ni > Co > Cd. Considering the results, Cd (1.95 ± 0.12 µg/g), Pb (39.21 ± 2.14 µg/g) and Zn (64.99 ± 8.16 µg/g) values were above the normal values specified for agricultural lands. The findings obtained from sequential extraction procedure showed that Cd (78%) and Pb (65%) existed mostly in mobile phases. Such mobile phases originated mostly from anthropogenic sources. These findings were also supported by chemometric analyses. Risk assessments pointed out that while Pb and Zn have moderate risks on the environment, Cd creates high risks.  相似文献   

5.
淹水条件下控释氮肥对污染红壤中重金属有效性的影响   总被引:2,自引:0,他引:2  
采用淹水培养方法研究了不同氮水平(100、200和400 mg/kg,分别记为1、2、3)下普通尿素(PU)、硫包膜尿素(SCU)、树脂包膜尿素(PCU)和硫加树脂双层包膜尿素(SPCU)对污染红壤中Cd、Pb、Cu、Zn有效性的影响.结果表明,不同包膜尿素对土壤pH值和水溶性SO42-含量有较大影响.各施氮处理红壤pH值随着施氮量的增加(除5d时PU和60 d时SCU)而增加,不同包膜尿素对土壤中水溶性SO42-含量有较大影响,在同一施氮水平下不同包膜尿素处理间土壤pH值和土壤中水溶性SO42-含量差异较大.60 d培养期间PU、SCU、PCU和SPCU处理pH值比对照分别升高0.17-0.38、0.08-0.27、0.07-0.36和0.10-0.21;水溶性SO42-含量PU、SCU和PCU处理比对照分别升高39.5%-157.3%、40.9%-94.5%和7.55%-55.8%,而SPCU处理降低5.67%-90.7%.不同尿素类型和氮肥的施用量对红壤Cd、Pb、Cu和Zn有效性的影响均存在显著差异.60 d培养期间红壤有效态Cd含量以树脂包膜尿素100 mg N/kg下最低,其有效态Cd含量比对照显著降低20.7%-69.8%;有效态Pb、Cu和Zn含量以普通尿素400 mg N/kg下最低,其有效态Pb、Cu和Zn含量比对照分别显著降低17.0%-54.2%、18.5%-34.6%和15.6%-59.5%.随施氮量提高,PU处理有效态Cd含量先升高后降低,有效态Pb、Cu和Zn含量逐渐降低;SCU处理有效态Pb含量逐渐降低,有效态Cd、Cu和Zn含量变化规律不一致;PCU处理有效态Cd含量逐渐升高,有效态Pb、Cu和Zn含量变化规律不一致;SPCU处理有效态Cd、Pb、Cu和Zn含量逐渐降低.有效态Pb和Zn含量与pH值和水溶性SO42-含量呈显著负相关,有效态Cd与水溶性SO42-含量呈显著正相关.在多重金属污染红壤中,可考虑不同控释氮肥的配合使用,降低土壤中重金属的有效性.  相似文献   

6.
The objective of this study is the evaluation of health risk of heavy metals in soils of urban community gardens of Baghdad City in Iraq. The soil samples were collected from 14 community gardens and analyzed for Cd, Cr, Cu, Ni, Pb and Zn. The non-carcinogenic hazard index (HI) and carcinogenic risk index (RI) were utilized to evaluate human health risk of heavy metals. The health hazard evaluation showed that there is no non-carcinogenic hazard in light of the fact that the HI values were beneath the threshold value (HI < 1). The HI for children and adults has a descending order of Cd < Cr < Cu < Ni < Pb < Zn. The carcinogenic RI values for Cd, Cr and Ni were over the unacceptable threshold value (RI < 1 × 10?4), demonstrating that there is a serious carcinogenic risk for children and adults in the study area. The carcinogenic RI for children and adults has a descending order of Cr < Cd < Ni. These findings give environment administrators and leaders data on whether therapeutic activities are required to decrease exposure.  相似文献   

7.
重金属污染区土壤酶活性变化   总被引:5,自引:1,他引:4  
王涵  高树芳  陈炎辉  王果 《应用生态学报》2009,20(12):3034-3042
从福建龙岩新罗区特钢厂污灌区农田采集土壤,测定土壤基本理化性质及脲酶、纤维素酶、碱性磷酸酶、多酚氧化酶、过氧化氢酶活性和Cu、Cd、Pb、Zn含量,探讨重金属污染和土壤性质对土壤酶活性的影响.结果表明: 4种全量或有效态重金属与土壤脲酶、纤维素酶、碱性磷酸酶和多酚氧化酶活性呈显著正相关,与过氧化氢酶活性呈显著或极显著负相关;土壤pH与碱性磷酸酶活性呈极显著正相关,粉粒含量与过氧化氢酶活性呈显著负相关.经通径分析,重金属污染刺激了脲酶、多酚氧化酶和纤维素酶活性,但对碱性磷酸酶活性的影响较小.有效态Cu、Cd、Pb、Zn对过氧化氢酶活性的直接影响并不大,但通过间接途径抑制了过氧化氢酶活性.土壤理化性质对5种土壤酶活性的影响较大,碱解氮直接抑制了脲酶活性;全磷直接刺激了碱性磷酸酶和过氧化氢酶活性,并通过有效磷刺激了纤维素酶活性;有效磷直接刺激了纤维素酶活性,直接抑制了碱性磷酸酶和过氧化氢酶活性;全钾直接抑制了碱性磷酸酶和多酚氧化酶活性;速效钾通过有效磷刺激了纤维素酶活性;土壤颗粒组成明显影响多酚氧化酶和过氧化氢酶活性.5种酶活性与土壤Cu、Cd、Pb、Zn含量之间的关系不明确,因此其活性不是指示土壤Cu、Cd、Pb、Zn污染的良好指标.  相似文献   

8.
Severe polymetallic contamination is frequently observed in the mining communities of Bolivian Altiplano. We evaluated hair trace elements concentrations at the population level to characterise exposure profile in different contexts of contact with mining and metallurgical pollution. We sampled 242 children aged 7 to 12 years in schools from five Oruro districts located in different contexts of potential contamination. Hair trace elements concentrations were measured using ICP-MS (Pb, As, Hg, Cd, Sb, Sn, Bi, Ag, Ni, Se, Cu, Cr, Mn, Co and Zn). We compared concentration according to school areas and gender. Concentrations were markedly different depending on school areas. Children from schools near industrial areas were far more exposed to non essential elements than children from downtown and suburban schools, as well as the rural school. The most concentrated non-essential element was Pb (geometric means (SD): 1.6 (1.3) μg/g in rural school; 2.0 (2.3) μg/g in suburban school; 2.3 (3.0) μg/g in downtown school; 14.1 (2.7) μg/g in the mine school and 21.2 (3.3) μg/g in the smelter school). Boys showed higher levels for all non-essential elements while girls had higher levels of Zn. Hair trace elements concentrations highlighted the heterogeneity of exposure profiles, identifying the most contaminated districts.  相似文献   

9.
从福建龙岩新罗区特钢厂污灌区农田采集土壤,测定土壤基本理化性质及脲酶、纤维素酶、碱性磷酸酶、多酚氧化酶、过氧化氢酶活性和Cu、Cd、Pb、Zn含量,探讨重金属污染和土壤性质对土壤酶活性的影响.结果表明:4种全量或有效态重金属与土壤脲酶、纤维素酶、碱性磷酸酶和多酚氧化酶活性呈显著正相关,与过氧化氢酶活性呈显著或极显著负相关;土壤pH与碱性磷酸酶活性呈极显著正相关,粉粒含量与过氧化氢酶活性呈显著负相关.经通径分析,重金属污染刺激了脲酶、多酚氧化酶和纤维素酶活性,但对碱性磷酸酶活性的影响较小.有效态Cu、Cd、Pb、zn对过氧化氢酶活性的直接影响并不大,但通过间接途径抑制了过氧化氢酶活性.土壤理化性质对5种土壤酶活性的影响较大,碱解氮直接抑制了脲酶活性;全磷直接刺激了碱性磷酸酶和过氧化氢酶活性,并通过有效磷刺激了纤维素酶活性;有效磷直接刺激了纤维素酶活性,直接抑制了碱性磷酸酶和过氧化氢酶活性;全钾直接抑制了碱性磷酸酶和多酚氧化酶活性;速效钾通过有效磷刺激了纤维素酶活性;土壤颗粒组成明显影响多酚氧化酶和过氧化氢酶活性.5种酶活性与土壤Cu、Cd、Pb、Zn含量之间的关系不明确,因此其活性不是指示土壤Cu、Cd、Pb、Zn污染的良好指标.  相似文献   

10.
The study covered the children living in Miasteczko ?lcaskie, near the largest Zn plant in Poland. This is one of the areas highly contaminated with heavy metals. The subjects were 158 children aged from 8 to 15 (98 boys and 60 girls). The average Pb and Cd levels in the hair of the entire children population was 8.21 ± 5.59 μg/g, and 0.91 ± 0.61 μg/g, and the average Pb and Cd levels in their blood were 14.32 ± 3.98 and 0.52 ± 0.24 μg/dL-1, respectively. The children population under investigation was divided according to their sex. The hair of the girls contained, on the average, 5.06 ± 2.81 μg/g of Pb and 0.74 ± 0.48 ug/g of Cd and the hair of the boys 10.14 ± 6.0 μg/g of Pb and 1.01 ± 0.65 ug/g of Cd. The blood of the girls contained, on the average, 13.23 ± 4.23 μg/dL of Pb and 0.48 ± 0.21 μg/dL of Cd, and the blood of the boys 14.99 ± 3.68 μg/dL of Pb and 0.55 ± 0.24 μg/dL of Cd. Thus, both the hair and blood of the boys accumulated more Pb and Cd than those of the girls. A correlation between the concentrations of these metals was confirmed.  相似文献   

11.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

12.
We studied the distribution of seven heavy metals and As in typical municipal greenbelt roadside soils in Pudong New District, Shanghai, China. As and Ni showed no significant accumulation compared with the background values of the local soils, but there was strong evidence of accumulation of Cd, Cr, Cu, Hg, Pb and Zn in the roadside soils. However, only Zn and Cd contents were higher than the pollution thresholds of the Chinese National Soil Quality standard. The concentrations of heavy metal(loid)s in the soils were significantly affected by the length of time since the roads were constructed. Soils from areas adjacent to an older road had higher levels of Cu, Pb, Cd and Zn. In terms of spatial distribution, more Cd, Cu, Pb and Zn were found in the soil from the green areas of median between carriageways than from those of the roadside verges. Vertical distribution analysis shows that the contents of Pb, Cd, Cu and Zn had maximum values in the topsoil and were substantially lower in the deeper layers of the soil profile. Moreover, correlation analysis reveals that these four heavy metals originated from the same pollution sources and their contents were directly associated with the traffic density.  相似文献   

13.
This study evaluates the amount and distribution of Pb and Cd in roadside soils adjacent to two main roads in Irbid, Jordan, from October 2001 to July 2002. A total of 260 samples were collected from Irbid-Howara Street and Yarmouk University Street. Lead and Cd content were measured using Graphite Furnace Atomic Absorption Spectrometry. The environmental significance of this study is discussed in terms of the influence of traffic density on Pb and Cd concentrations in roadside soils, and enrichment factors were calculated to evaluate the degree of pollution. The accuracy of the results obtained has been examined and two standard reference materials, CRM 142 R (soil) and SRM 2709 (soil), were analyzed to confirm the accuracy of the results. The precision of the measurements was assessed in terms of relative standard deviation (RSD) using five replicate analyses of samples collected from the roadside sites. RSD values for Pb and Cd were found to be less than 6%. The overall Pb concentration in roadside soil samples was 325 and 431 μg g?1 for Pb and 1.142 and 1.135 μg g?1 for Cd in Yarmouk University Street and Irbid-Houwa Street, respectively. Results indicated that levels of Pb and Cd were decreasing as the distance from the road increases. Enrichment factor results were 655 and 826 for Pb, and 252 and 237 for Cd in Yarmouk University Street and Irbid-Houwa Street, respectively.  相似文献   

14.
Dissolved organic matter in poultry litter could contribute organic ligands to form complexes with heavy metals in soil. The soluble complexes with heavy metals can be transported downward and possibly deteriorate groundwater quality. To better understand metal mobilization by soluble organic ligands in poultry litter, soil columns were employed to investigate the movement of zinc (Zn), cadmium (Cd), and lead (Pb). Uncontaminated soil was amended with Zn, Cd, and Pb at rates of 400, 8, and 200 mg kg ? 1 soil, respectively. Glass tubes, 4.9-cm-diameter and 40-cm-long, were packed with either natural or metal-amended soil. The resulting 20-cm-long column of soils had bulk density of about 1.58 g cm ? 3 . Columns repacked with natural or amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl 2 , or poultry litter extract (PLE) solutions. Low amounts of Zn, Cd, and Pb were leached from natural soil with the solutions. Leaching of Zn, Cd, or Pb was negligible with distilled water. In the metal-amended soil, EDTA solubilized more Zn, Cd, and Pb than CaCl 2 and PLE. The breakthrough curves of Zn and Pb in the PLE and CaCl 2 were similar, indicating they have similar ability to displace Zn and Pb from soils. Compared with Zn and Cd the PLE had a small ability to solubilize Pb from metal-amended soil. Thus, the application of poultry litter on metal-contaminated soils might enhance the mobility of Zn and Cd.  相似文献   

15.
IntroductionEnvironmental pollution, especially by toxic trace elements, is a global health concern. Heavy metals such as Cadmium (Cd), Arsenic (As) and Lead (Pb) are associated with numerous disorders and are considered by some as an aetiological factor for the Chronic Kidney Disease (CKDu1) epidemic in Sri Lanka. This study explores patterns of bioaccumulation of six trace elements in kidneys obtained during forensic autopsies from urban and rural regions in Sri Lanka.MethodsKidney samples obtained from one urban district (n = 13) and three rural districts (n = 18) were lyophilized, microwave digested and profiled by ICP-MS techniques.Results and DiscussionThe mean age of the sampled population was 47.9 ± 11.3 yrs. Median (IQR) for Cd, As, Pb, Cr, Zn and Se were, 14.67(8.04–22.47) μg/g, 0.44(0.29–0.56) μg/g, 0.11(0.07–0.30) μg/g, 0.15(0.1096–0.3274), 25.55(17.24–39.35) μg/g and 0.52(0.37−0.84) μg/g, respectively. Cd, Zn and Se levels were significantly higher (p < 0.05) among the urban samples compared to that of the rural group. Zn and Se levels were higher among younger age groups. As, Pb and Cr did not show any significant differences between the two cohorts nor any correlations with age.ConclusionThis population-specific baseline study provides an insight into the differences in exposure to toxic trace elements and essential elements between urban and rural populations. Residents in CKDu affected rural districts did not appear to be at risk of toxic heavy metal exposure, however their renal bioaccumulation of nephroprotective essential elements was lower than urban residents.  相似文献   

16.
The contamination of agricultural soils by heavy metals is a worldwide problem. Degradation of organic matter (OM) from organic amendments used in the remediation of metal-contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of four differing organic amendments on chemical forms of Pb and Cd in a contaminated soil were investigated in a pot experiment of control unamended soil and soils amended with dry cow and poultry manures (20 g CM or PM kg?1 soil), and cow and poultry manure extracts (2 g CME or PME kg?1 soil) cultured with cannabis sativa. After eight weeks, a sequential extraction scheme was used to fractionate soil Pb and Cd into soluble-exchangeable (Sol-Exch), organic matter associated (AOM), and carbonates associated (ACar) forms. The addition of animal manures and their extracts increased the DTPA-extractable Pb and Cd in soil significantly. Soil Pb and Cd in Sol-Exch fraction were increased by manure applications. Both Pb and Cd in AOM fraction were increased by application of manures and their extracts. This increase was more obvious for Pb in application of cow and poultry manure extracts. The ACar chemical forms of Pb and Cd were also increased by application of manures and their extracts. The increases of Pb and Cd in Acar fraction was noticeable in soils treated with cow manure. Soil cultivation with cannabis sativa increased available, Sol-Exch, and AOM chemical forms of Pb in soil significantly compared to control soil. However, soil Pb and Cd in ACar fraction were decreased significantly by cannabis cultivation. The effect of cannabis cultivation on all of the Cd chemical forms (except on Sol-Exch) was similar to the results of Pb chemical forms. Plant cultivation had no significant effect on Cd in Sol-Exch chemical form.  相似文献   

17.
Concentrations of Pb, Zn, Cd, Ni, Cu, Cr, and Mn were determined to assess the impact of automobiles on heavy metal contamination of roadside soil. Soil samples at four polluted sites and a control site were collected at a depth of 0, 2, 5, 10, 15, 20, 30?cm. A comparison of elemental levels between polluted and control sites exhibited exceptionally higher concentrations at the former sites. The Pb levels in polluted sites varied from 70 to 280.5?µgg?1and it rapidly decreased with depth. Similarly, mean concentrations of Zn, Cd, Ni, Cu, Cr, and Mn were significantly higher at polluted sites and followed a decreasing trend with the increase in depth. Correlation coefficients between heavy metals and traffic density were positively significant except for nickel. Profile samples showed that Pb, Zn, Cd, Cu, and Mn were largely concentrated in the top 5?cm confirming airborne contamination. The vertical movement and partitioning of metals, except Ni and Cr, exhibited predominant association with soil pH and organic carbon. The results have been presented using Heavy Metal Index.  相似文献   

18.
Soil samples (0 to 5?cm) from 30 locations in the Celje region, Slovenia, an area that has been subjected to severe industrial emissions of Pb and Zn, were analyzed for selected soil properties and subjected to a six-step sequential extraction of Pb and Zn. Phyto-available forms of heavy metals: soluble in soil solution and exchangeable from soil colloids to soil solution together accounted for 0 to 1.68% of Pb and 0 to 40.8% of total soil Zn. Most of the Pb and Zn was found to reside in less labile forms bound to carbonate (2.04 to 43.5% Pb, 3.9 to 35.1% Zn), bound to Fe and Mn oxides (0 to 16.1% Pb, 1.4 to 25.4% Zn), bound to organic matter (35.8 to 71.1% Pb, 14.8 to 56.2% Zn), and in the residual fraction (10.4 to 53.4% Pb, 14.2 to 75.3% Zn). Factor analysis and stepwise multiple regression revealed that the concentration of Pb in the proposed indicator plant, narrow leaf plantain (Plantago lanceolata) did not correlate with the measured soil properties, Pb fractionation in soil, and total soil Pb. Plant uptake of Zn, however, significantly correlated with soil pH and with the share of phyto-available forms of Zn in the soil (R2 = 86.9). A statistically significant correlation (P<0.01) was found between the fractions of Pb and Zn carbonates and soil organic matter content (R2 = 90.6 and 90.9, respectively); the fraction of Pb bound to organic matter and soil organic matter content (R2 = 90.6); the residual fraction of Pb and total Pb content in soil (R2 = 95.7); the fraction of Zn bound to Fe an Mn oxides, the fraction of Zn bound to organic matter, the residual fraction of Zn and total Zn content in soil (R2 = 75.9, 93.2, and 87.4, respectively). Soil texture, pH, and cation exchange capacity did not affect the relative proportions of Pb and Zn forms in soil.  相似文献   

19.
Due to rapid industrialization and urbanization during the last two decades, contamination of urban agricultural soils by heavy metals is on an increase all over China. In this study, fifty soil samples were collected from urban vegetable fields in a chemical industrial area and non chemical industrial area in Jilin City to investigate the heavy metal pollution level. The mean Pb, Cr, Cu, Ni, Zn, and Cd contents (30.84, 65.65, 26.41, 23.07, 135.14, and 0.1434 mg kg?1 dry weight, respectively) in the urban vegetable soils were higher than their corresponding natural background values. The principal component analysis (PCA) was performed to identify the possible sources of metal contamination in the study area. The results indicated that Cu and Zn were mainly from industrial activities, while Pb and Cd were derived from traffic activities and agricultural activities, and Cr and Ni tended to be from parent material. The distribution of comprehensive pollution index values showed that Pb, Cr, Cu, Ni, Zn, and Cd concentrations in most of the agricultural fields did not exceed the baseline values affecting the safety of agricultural production and human health according to the soil environmental quality standard of China, indicating an insignificant contamination of these metals in Jilin City.  相似文献   

20.
Uptake of Cd, Zn, Pb and Mn by the hyperaccumulator Thlaspi caerulescens was studied by pot trials in plant growth units and in populations of wild plants growing over Pb/Zn base-metal mine wastes at Les Malines in the south of France. The pot trials utilised metal-contaminated soils from Auby in the Lille area. Zinc and Cd concentrations in wild plants averaged 1.16% and 0.16% (dry weight) respectively. The unfertilised biomass of the plants was 2.6 t/ha. A single fertilised crop with the above metal content could remove 60 kg of Zn and 8.4 kg Cd per hectare. Experiments with pot-grown and wild plants showed that metal concentrations (dry weight basis) were up to 1% Zn (4% Zn in the soil) and just over 0.1% Cd (0.02% Cd in the soil). The metal content of the plants was correlated strongly with the plant-available fraction in the soils as measured by extraction with ammonium acetate and was inversely correlated with pH. Bioaccumulation coefficients (plant/soil metal concentration quotients) were in general higher for Cd than for Zn except at low metal concentrations in the soil. There was a tendency for these coefficients to increase with decreasing metal concentrations in the soil. It is proposed that phytoremediation using Thlaspi caerulescens would be entirely feasible for low levels of Cd where only a single crop would be needed to halve a Cd content of 10 g/g in the soil. It will never be possible to remediate elevated Zn concentrations within an economic time frame (<10 yr) because of the lower bioaccumulation coefficient for this element coupled with the much higher Zn content of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号