首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. R. Spencer 《BioControl》1988,33(4):421-429
Niesthrea louisianica Sailer (Rhopalidae) is native from Arizona to Florida north to New York and West to Iowa in the Mississippi Valley. Immatures and adults feed on seeds of malvaceous plants. Velvetleaf,Abutilon theophrasti Medic. (Malvaceae), is a major exotic weed of corn, soybeans, cotton, and sorghum, and is among the hosts forN. louisianica. A laboratory colony ofN. louisianica was established in 1984 using imbibed velvetleaf seeds as the food source. The colony was expanded in 1985 to support field releases in velvetleaf infested fields in the Midwest and New York State. Approximately 83,000 adultN. louisianica were released in 5 States. The insects reproduced and were found more than a kilometer from the release point at some release sites. In areas of establishment, a significant reduction in seed viability was recorded.   相似文献   

2.
苘麻是旱田常见杂草,可造成作物减产,化感作用是造成减产的可能原因之一。本研究分析了苘麻挥发油成分对3种旱田作物小麦、玉米和大豆种子萌发和幼苗生长的化感作用。结果表明: 应用气相色谱-质谱(GC-MS),从苘麻挥发油中鉴定出26种化学成分,占总峰面积的98.1%,其中,低分子量萜类成分有α-蒎烯、桉树醇、α-松油烯、β-松油烯、反式α-紫罗兰酮、反式β-紫罗兰酮。苘麻挥发油饱和水溶液能通过滤纸和土壤2种基质抑制3种作物种子萌发。苘麻挥发油能通过空气、滤纸和土壤3 种基质抑制3种作物幼苗生长,对小麦的抑制作用最强,玉米和大豆次之。苘麻挥发油对小麦生长的抑制作用以空气载体最强,滤纸和土壤载体次之。挥发油中低分子量的萜类成分可能是重要的化感成分。  相似文献   

3.
(?)-Cryptocaryalactone (6-[2-acetoxy-4-phenyl-3-butenyl]-5,6-dihydro-2-pyranone) and (?)-deacetylcryptocaryalactone (6-[2-hydroxy-4-phenyl-3-butenyl]-5,6-dihydro-2-pyranone) isolated from Cryptocarya moschata seeds are natural germination inhibitors. Applied at 0.004 M, the second compound completely arrested germination of velvetleaf (Abutilon theophrasti) and decreased the germination rate of soybeans, but did not appear to affect corn. The first compound was not as effective; 0.004 M reduced velvetleaf germination 50%.  相似文献   

4.
H.J. Zeringue 《Phytochemistry》1984,23(11):2501-2503
(?)-Cryptocaryalactone (6-[2-acetoxy-4-phenyl-3-butenyl]-5,6-dihydro-2-pyranone) and (?)-deacetylcryptocaryalactone (6-[2-hydroxy-4-phenyl-3-butenyl]-5,6-dihydro-2-pyranone) isolated from Cryptocarya moschata seeds are natural germination inhibitors. Applied at 0.004 M, the second compound completely arrested germination of velvetleaf (Abutilon theophrasti) and decreased the germination rate of soybeans, but did not appear to affect corn. The first compound was not as effective; 0.004 M reduced velvetleaf germination 50%.  相似文献   

5.
Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials.  相似文献   

6.
Importance of several weed species has been considerably increased during the last few decades in Hungary. Velvetleaf (Abutilon theophrasti Medic.) belongs to this spreading weed group as well. This weed species was in the 27th position in the course of the fourth Hungarian weed survey, but at the time of the fifth weed survey in 2007-2008 it stepped forward to the 10th position in the cornfields of Zala County. Requiring a warm climate, global climate warming plays a significant role in its rapid spread. Moreover, its effective reproduction strategy supports its occurrence and continuous spread in almost all field crops. Protection against velvetleaf can only be successful, if we know its biological and ecological characteristics. Comprehensive knowledge of the plant and selection of a proper application of weed control methods together can result velvetleaf free crop fields. The experiment was set up on the 29th of April 2009 at Keszthely where fifty seeds were sown into 50 litres volume plastic pots, in four replications with fifty pieces of seed per each plot. Germination percent of velvetleaf seeds and several growth indexes of seedlings (stem- and root length, leaf area, number of leaves, stem- and root fresh and dry weight) were measured on three different sampling dates.  相似文献   

7.
Velvetleaf (Abutilon theophrasti Medicus 1787) is one of the most economically threatening weed plant in Hungary. Researching biological control against it, and identifying a possible and effective biocontrol agent is an important challenge, as chemical control is difficult and expensive, and there is an increasing claim to practice slight plant protection. Entomological studies were made in several parts of the world, for evaluating the species, occuring in velvetleaf, but none of these kind of experiments were assessed in Hungary. Our observations were made in field and plastic boxes, both under open field circumstances in 2008 and 2009 by visually assessing pests, netting and damage based identifying. Meanwhile 8 pest species were identified, including (Helix pomatia Linnaeus 1758--roman snale; Trialeurodes vaporariorum (Westwood 1856)--greenhouse whitefly; Oxycarenus lavaterae (Fabricius 1787)-- lime seed bug; Pyrrhocoris apterus (Linnaeus 1758)--fire bug; Rhopalus parumpunctatus Schilling 1829--common hyaline bug; Liorhyssus hyalinus--hyaline grass bug (Fabricius 1794); Mamestra brassicae (Linnaeus 1758)--cabbage moth; Helicoverpa armigera (Hübner 1808)--corn earworm). On the whole the literature datas were enlarged with four new velvetleaf pests (roman scale, lime seed bug, common hyaline bug, cabbage moth). Considering the earlier literature and our results, Liorhyssus hyalinus may play an important role on biological management of velvetleaf. However this pest considered as polyphagous, but discovered to occur in great numbers on velvetleaf, this points to the fact that can be its main host plant and by sucking on the plant, can cause decreased germination rate. We suggest the "hyaline velvetleaf bug" name istead of "hyaline grass bug". Of course, additional experiments are needed on this pest to may use safety and effectively in the future.  相似文献   

8.
Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems.  相似文献   

9.
《Genomics》2019,111(4):913-920
Enterobacter sp. J49 is a plant growth promoting endophytic strain that promotes the growth of peanut and maize crops. This strain promotes plant growth by different mechanisms with the supply of soluble phosphorus being one of the most important. Enterobacter sp. J49 not only increases the phosphorus content in the plant but also in the soil favoring the nutrition of other plants usually used in rotation with these crops. The aims of this study were to analyze the genome sequence of Enterobacter sp. J49 in order to deepen our knowledge regarding its plant growth promoting traits and to establish its phylogenetic relationship with other species of Enterobacter genus. Genome sequence of Enterobacter sp. J49 is a valuable source of information to continuing the research of its potential industrial production as a biofertilizer of peanut, maize and other economically important crops.  相似文献   

10.
Plant hormones cytokinins regulate various aspects of plant growth and development. For their positive effects on branching, delaying of senescence, nutrient remobilisation, flower and seed set control they became interesting substances in search for potential agrochemicals. From the 1970’ of the last century exogenous application of cytokinins have been tested in field conditions to improve yield traits of world-wide important crops such as wheat, rice, maize, barley, and soybean. Despite the extensive testing summarized in this work, so far cytokinins haven’t found their stable place among commercialized plant growth regulators, mainly due to the complexity of their effects. Here we bring an overview of the outcomes obtained in pot and field experiments using cytokinin exogenous treatments, summarize the ways of application and point to the affected traits in various field crops, vegetables, cotton and fruit trees. Further, we present here outcomes of field trials performed with a derivative of N6-benzyladenine, 2-chloro-6-(3-methoxybenzyl)aminopurine, in spring barley and winter wheat. The effect on yield forming traits such as number of tillers, grains per ear, number of ears and the final yield was evaluated and compared after spraying of the both crops in different phenological stages.  相似文献   

11.
Kenaf,Hibiscus cannabinus L., occurs as a wild and ruderal plant in Kenya and Tanzania. It is polymorphic, varying in height, growth habit, spininess, flower color, and size of floral parts, capsules, and seeds. It occupies several distinct environmental niches, from low-lying meadows close to swamps and streams to semi-arid grassland /thornbush plains. It is also found in various weedy situations, such as cultivated and fallow fields, and fence- and hedgerows. At least one ecotype appears to be specifically adapted as a weed of cultivated fields. Leaves and stem-tips of this plant are used as food. It is not cultivated for this purpose, although it is sometimes encouraged in fields of maize, cassava, and perhaps other crops. It is apparently not used for fiber by the natives, possibly because fiber of the introduced sisal (Agave sisalana Perr.) is readily available everywhere. Kenaf fiber is produced commercially on a plantation in Tanzania, from a cultivar developed in Guatemala. The occurrence of twelve other taxa of Hibiscus section Furcaria in East Africa is discussed briefly.  相似文献   

12.
Nitrogen fixation was estimated in `Bragg,' `Forrest,' and `Bethel' soybean (Glycine max [L.] Merrill) from seven locations northwest of New South Wales, Australia, by relating ureide and nitrate contents of plant parts sampled at regular intervals during growth to standard curves derived under controlled nitrate regimes. Estimates were combined with data on crop growth and mineral N contents of soils to (a) determine the total requirements for N by the crops, (b) determine the contributions of N2 fixation to crop growth, and (c) relate symbiotic dependence ([N2 fixed/total plant N] × 100) of the crops to levels of mineral N in the soil at sowing. At two locations, Myall Vale and Glenara, levels of ureides in the shoot axes and roots of unnodulated seedlings were surprisingly high at the first time of sampling, perhaps reflecting effects of uptake of ammonium-N by the soybeans or breakdown and remobilization of cotyledonary protein. Ureides in plant parts declined significantly by the second (V5 to V7 growth stage) sampling. Subsequently, ureide contents increased whereas levels of nitrate in plant parts decreased. The relative abundance of ureides ([ureide-N/ureide-N + nitrate-N] × 100) in the shoot axes and nodulated roots of both crops increased linearly from almost zero during mid-vegetative growth (V5 to V7) to virtually 100% during late reproductive growth (R4 to R5, Myall Vale and R6, Glenara). The data suggest a steady transition in soybeans at both locations from dependence upon mineral N for early growth to complete reliance upon fixed N during late reproductive growth. Estimates of seasonal N2 fixation for soybeans at the seven locations ranged from 73 to 288 kilograms per hectare N (shoot axes ureides) and from 147 to 337 kilograms per hectare N ha (nodulated roots ureides).  相似文献   

13.
Increased imports of genetically modified (CM) soybean and maize might cause genetic contamination of those crops that are conventionally bred, as well as wild soybeans within Korea. Leaves of maize and both cultivated and wild soybeans were sampled in and near rural fields to detect the presence of transgenes. Roadsides around a major grain port in Incheon were also surveyed to monitor the occurrence of incoming CM soybean and maize. The amplificability of DNA extracted from the collected samples was determined by PCR using soybean- or maize-specific primers: lectin and zein genes, respectively. The presence or absence of transgenes was detected by primer sets for the 35S and nos genes. Transgenes were not found in the cultivated or wild soybean or in the maize collected from cultivated fields. However, we obtained one GM maize plant among seven along the roadsides around Incheon Port. Although the effect of a single GM maize plant would be negligible and would not pose any threat to natural environments, an increase in the import of GM plants might lead to future, unapproved cultivation of GM crops. Therefore, appropriate monitoring is necessary to detect the occurrence of GM plants in areas around grain receiving ports and within agroecosystems.  相似文献   

14.
The widespread cultivation of transgenic soybeans has caused significant changes in the spectrum of Lepidoptera larvae, both in the number of species as well as on their densities in the field. Transgenic crops producing Bacillus thuringiensis (Bt) insecticidal proteins have successfully reduced the incidence of the most common caterpillars infesting soybeans, namely Anticarsia gemmatalis (Lepidoptera: Erebidae) and Chrysodeixis includens (Lepidoptera: Noctuidae). However, lepidopteran species not previously recorded on the crop have been recently found, and are of concern due to the possibility of adaptation to the genetically modified cultivars. The occurrence of Peridroma saucia Hübner (Lepidoptera: Noctuidae) is described for the first time in Brazil feeding on genetically modified soybean cultivars.  相似文献   

15.
In the tropics, cowpea is often intercropped with maize. Little is known about the effect of the intercropped maize on N2-fixation by cowpea or how intercropping affects nitrogen fertilizer use effiency or soil N-uptake of both crops. Cowpea and maize were grown as a monocrop at row spacings of 40, 50, 60, 80, and 120 cm and intercropped at row spacing of 40, 50, and 60 cm. Plots were fertilized with 50 kg N as (NH4)2SO4; microplots within each plot received the same amount of15N-depleted (NH4)2SO4. Using the15N-dilution method, the percentage of N derived from N2-fixation by cowpea and the recovery of N-fertilizer and soil N-uptake was measured for both crops at 50 and 80 days after planting.Significant differences in yield and total N for cowpea and maize at both harvest periods were dependent on row spacing and cropping systems. Maize grown at the closer row spacing accumulated most of its N during the first 50 days after planting, whereas maize grown at the widest row spacing accumulated a significant portion of its N during the last 30 days before the final harvest, 80 days after planting.Overall, no significant differences in the percentage of N derived from N2-fixation for monocropped or intercropped cowpea was observed and between 30 and 50% of its N was derived from N2.At 50 DAP, fertilizer and soil N uptake was dependent on row spacing with maize grown at the narrowest row spacing having a higher fertilizer and soil N recovery than maize grown at wider spacings. At 50 and 80 DAP, intercropped maize/cowpea did not have a higher fertilizer and soil N uptake than monocropped cowpea or maize at the same row spacing. Monocropped maize and cowpea at the same row spacing took up about the same amount of fertilizer or soil N. When intercropped, maize took up twice as much soil and fertilizer N as cowpea. Apparently intercropped cowpea was not able to maintain its yield potential.Whereas significant differences in total N for maize was observed at 50 and 80 DAP, no significant differences in the atom %14N excess were observed. Therefore, in this study, the atom %14N excess of the reference crop was yield independent. Furthermore, the similarity in the atom %14N excess for intercropped and monocropped maize indicated that transfer of N from the legume to the non-legume was small or not detectable.  相似文献   

16.
The fascinating biology of Striga parasitism is manifest through a series of signal exchanges between the parasite and its host. As an obligate root hemi-parasite, Striga development is cued to exudates and solutes of host roots but with negative ramifications on host plant health. Striga control in crops, via a variety of biotechnological approaches, needs to be based on increased understanding of this intricate biology. Maize has become the major cereal crop of Africa. However, this New World transplant has shown a paucity of Striga resistance characters relative to native sorghum. In this paper, we review growing evidence for maize genetic defenses against early pre-emergent phases of the Striga life cycle, when the tolls of parasitism are first manifest. Resistance characters first described in maize wild relatives have now been captured in Zea mays. The possible stacking of new and complementary sources of resistance in improved maize varieties targeted for Striga prone areas is discussed. An integrated approach combining genetic with other control measures is advocated with a more realistic view of the resource challenges prevalent in African agriculture.Key words: Striga, parasitic weed, maize, sorghum, resistance, integrated control  相似文献   

17.
不同群体结构夏玉米灌浆期光合特征和产量变化   总被引:7,自引:0,他引:7  
大田试验以夏玉米为试料,采用裂裂区试验设计,密度设计包含75000、90000\,105000株/hm2 3个密度作为主区,每个密度处理包括: ①等行距60 cm×单株留苗,②等行距60 cm×双株三角留苗,③宽窄行距(宽行70 cm + 窄行距50 cm)×单株留苗和 ④宽窄行距×双株三角留苗共12种方式进行处理,测定光合及叶绿素荧光参数。研究不同群体结构对夏玉米灌浆期群体光合特性的影响。结果表明,在吐丝期,随着种植密度的增加,群体光合速率提高;蜡熟期以90000株/hm2最高,种植方式上表现为宽窄行大于等行距种植,双株留苗种植方式大于单株种植方式,差异均达到显著水平;随着种植密度的提高,群体内3个层次叶片最大光能转换效率(Fv/Fm)、光化学猝灭系数(qP)逐渐降低,种植方式基本表现为宽窄行大于等行距,留苗方式表现为双株大于单株。试验条件下,以90000株/hm2,宽窄行,双株三角留苗产量最高。  相似文献   

18.
In 1987, the University of Guelph established a large tree-based intercropping system on 30 ha of prime agricultural land in southern Ontario, Canada. The purpose was to investigate various aspects of intercropping trees with prime agricultural crops. In this study, objectives were to investigate tree competitive effects (i.e., shading and competition for soil moisture) on under-story crop net assimilation (NA), growth, and yield. The effects of tree competition on corn (C4 plant) and soybean (C3 plant) photosynthesis and productivity in the intercropped system were studied during the 1997 and 1998 growing seasons. Corn and soybeans were intercropped with hybrid poplar (clone-DN-177) and silver maple (Acer sacharrinum) at a within-row spacing of 6 m and between-row spacing of 12.5 or 15 m. Trees were absent from control rows. Tree rows were oriented approximately north and south. Twelve crop locations were sampled around each tree. These were at 2 and 6 m east and west of the tree, located along a primary axis running through the tree trunk and perpendicular to the tree row, and at 2 m north and south of each location along the primary axis. Net assimilation and plant water deficit measurements were made three times daily (morning, noon, afternoon) on sampling days in July. Generally, tree competition significantly reduced photosynthetic radiation (PAR), net assimilation (NA), and growth and yield of individual soybean or corn plants growing nearer (2 m) to tree rows in both years and soil moisture in 1998. NA was highly correlated with growth and yield of both crops. These correlations were higher for corn than soybeans in both years, with corn, rather than soybeans being more adversely impacted by tree shading. In 1997, poplar, rather than maple, had the greatest competitive effect on NA. In 1997, the lowest plant water deficits, for soybeans and for corn, were observed for the maple treatment. Nonetheless, in both years, daily plant water deficits were non-significantly and poorly correlated with NA and growth and yield of both crops. However, soil moisture (5 and 15 cm depth) was significantly correlated with soybeans yield in 1998. Possible remediation strategies are discussed to reduce tree competitive interactions on agricultural crops.  相似文献   

19.
Zhang  F.  Shen  J.  Li  L.  Liu  X. 《Plant and Soil》2004,260(1-2):89-99
Rhizosphere processes of individual plants have been widely investigated since 1904 when the term “rhizosphere” was first put forward. However, little attention has been paid to rhizosphere effects at an agro-ecosystem level. This paper presents recent research on the rhizosphere processes in relation to plant nutrition in main cropping systems in China. In the peanut (Arachis hypogaea L.)/maize (Zea mays L.) intercropping system, maize was found to improve the Fe nutrition of peanut through influencing its rhizosphere processes, suggesting an important role of phytosiderophores released from Fe-deficient maize. Intercropping between maize and faba bean (Vicia faba L.) was found to improve nitrogen and phosphorus uptake in the two crops compared with corresponding sole crop. There was a higher land equivalent ratio (LER) in the intercropping system of maize and faba bean than the treatment of no root interactions between the two crops. The increased yield of maize intercropped with faba bean resulted from an interspecific facilitation in nutrient uptake, depending on interspecific root interactions of the two crops. In the rotation system of rice (Oryza sativa L.)-wheat (Triticum aestivum L.) crops, Mn deficiency in wheat was caused by excessive Mn uptake by rice and Mn leaching from topsoil to subsoil due to periodic cycles of flooding and drying. However, wheat genotypes tolerant to Mn deficiency tended to distribute more roots to deeper soil layer and thus expand their rhizosphere zones in the Mn-deficient soils and utilize Mn from the subsoil. Deep ploughing also helped root penetration into subsoil and was propitious to correcting Mn deficiency in wheat rotated with rice. In comparison, oilseed rape (Brassica napus L.) took up more Mn than wheat through mobilizing sparingly soluble soil Mn due to acidification and reduction processes in the rhizosphere. Thus, oilseed rape was tolerant to the Mn-deficient conditions in the rice-oilseed rape rotation. Oxidation reactions on root surface of rice also resulted in the formation of Fe plaque in the rice rhizosphere. Large amounts of Zn were accumulated on the Fe plaque. Zinc uptake by rice plants increased as Fe plaque formed, but decreased at high amounts of Fe plaque. It is suggested that to fine-tune cropping patterns and optimize nutrient management based on a better understanding of rhizosphere processes at an agro-ecosystem level is crucial for increasing nutrient use efficiency and developing sustainable agriculture in China.  相似文献   

20.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号