首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and highly sensitive HPLC method for the simultaneous determination of three catecholamines (norepinephrine, epinephrine, and dopamine) was developed. Catecholamines were separated on a reversed-phase column, reacted with ethylenediamine at 70 degrees C and pH 8.2 for 4 min, and fluorometrically determined. Those detection limits were in the same range of 20 to 40 pg. When the method was applied to human urine samples, 3,4-dihydroxyphenylalanine, their precursor, was also determined.  相似文献   

2.
A highly specific and sensitive automated high-performance liquid chromatographic method for the simultaneous determination of catecholamines (CAs; norepinephrine, epinephrine, and dopamine) and their 3-O-methyl metabolites (normetanephrine, metanephrine, and 3-methoxytyramine) is described. Automated precolumn ion-exchange extraction of diluted plasma is coupled with HPLC separation of CAs and their 3-O-methyl metabolites on an ODS column, postcolumn coulometric oxidation, fluorescence derivatization with ethylenediamine, and finally peroxyoxalate chemiluminescence reaction detection. The detection limits were about 3 fmol for norepinephrine, epinephrine, and dopamine, 5 fmol for normetanephrine, and 10 fmol for metanephrine and 3-methoxytyramine (signal-to-noise ratio of 3). Fifty microliters of rat plasma was used and 4-methoxytyramine was employed as an internal standard. The relative standard deviations for the method (n = 5) were 2.5-7.6% for the intraday assay and 6.3-9.1% for the interday assay. The method was applicable to the determination of normetanephrine and metanephrine in 50 microl of rat plasma.  相似文献   

3.
This study was designed to examine the relationship between uterine contractile rhythms with maternal plasma and amniotic fluid catecholamine concentrations in the pregnant rhesus macaque. Six chronically catheterized rhesus macaques were maintained in a vest and tether system and exposed to a 12L:12D cycle. Continuous uterine activity recordings demonstrated a contractile pattern with peak activity at 2200 h (p less than 0.05). Paired maternal plasma and amniotic fluid samples were collected at 3-h intervals for 24 h between Days 131 and 148 of gestation. Samples were analyzed for norepinephrine, epinephrine, and dopamine by HPLC. Maximum plasma concentrations across the 24-h periods for norepinephrine (633 +/- 230; mean pg/ml +/- SEM) and dopamine (378 +/- 110) were observed at 2100 h and epinephrine (408 +/- 95) at 1200 h, but these values were not significant. The maximum amniotic fluid values were 378 +/- 126, 267 +/- 190, and 556 +/- 87 pg/ml for norepinephrine, epinephrine and dopamine, respectively. However, concentrations across 24 h did not differ. Neither maternal plasma nor amniotic fluid catecholamine concentrations were correlated with uterine activity rhythms. Therefore, we conclude that the nocturnal uterine activity in the rhesus macaque is not related to maternal arterial or amniotic fluid catecholamine concentrations.  相似文献   

4.
This study reports on the major source of circulating norepinephrine that is known to increase, progressively, during sustained hypoglycemia induced by intravenous insulin administration. Plasma concentrations of epinephrine, norepinephrine, and dopamine were simultaneously determined for adrenal venous and aortic blood in dogs anesthetized with sodium pentobarbital. The model used allowed us to perform a functional adrenalectomy (ADRX), while continuously monitoring the adrenal medullary secretory function. Under basal conditions, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine were 0.169 +/- 0.074, 0.067 +/- 0.023, and 0.011 +/- 0.003, respectively. Plasma concentrations (ng/mL) of aortic epinephrine, norepinephrine, and dopamine were 0.132 +/- 0.047, 0.268 +/- 0.034, and 0.034 +/- 0.009. Following insulin injection (0.15 IU/kg, i.v.), the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased gradually (p less than 0.05), reaching the values of 0.918 +/- 0.200, 0.365 +/- 0.058, and 0.034 +/- 0.007 30 min after insulin administration. Similarly, aortic epinephrine, norepinephrine, and dopamine concentrations (ng/mL) increased significantly (p less than 0.05) to 0.702 +/- 0.144, 0.526 +/- 0.093, and 0.066 +/- 0.024. The aortic glucose concentration (mg/dL) was diminished from 81.8 +/- 4.1 to 36.9 +/- 3.4 (p less than 0.01). After taking the blood sample at 30 min following insulin administration, ADRX was immediately performed. Five minutes after the onset of ADRX, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased further to 1.707 +/- 0.374 (p less than 0.05), 0.668 +/- 0.139 (p less than 0.05), and 0.052 +/- 0.017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Dopamine 3-0-sulfate is present in considerable amounts in mammalian plasma and peripheral tissues. Incubation of dopamine 3-0-sulfate (0.1 μmole) with purified bovine dopamine-β-hydroxylase resulted in the formation of free norepinephrine (7.3 × 10?3 μmole). The conversion to norepinephrine was inhibited by 0.6 mM of fusaric acid, an inhibitor of dopamine-β-hydroxylase. The reaction of dopamine 3-0-sulfate with dopamine-β-hydroxylase followed Michaelis-Menten kinetics. The calculated Km was 17 mM, different from the Km for free dopamine (0.1 mM). The incubation medium does not contain any sulfatase activity.  相似文献   

6.
1. The catecholamines dopamine, epinephrine and norepinephrine were detected in alumina extracts of Limulus midgut tissue using high performance liquid chromatography with electrochemical detection. Moderate levels of norepinephrine (28.2 +/- 2.1 ng/g) and dopamine (24.0 +/- 5.2 ng/g) were detected in the midgut, while epinephrine levels (7.4 +/- 0.9 ng/g) were less. Catecholamines were present in all regions along the longitudinal axis of the midgut, and norepinephrine and dopamine levels were highest in posterior regions. 2. Catecholamines decreased muscle tonus and inhibited spontaneous contractions of the Limulus midgut. Dopamine typically decreased spontaneous midgut activity at doses of 10(-8) M or greater, and produced inhibitory actions on all regions of the Limulus midgut. In some preparations epinephrine and norepinephrine elicited a secondary rhythmicity. The actions of dopamine opposed the excitatory effects produced by either proctolin or octopamine. 3. Catecholamines significantly elevated levels of cyclic AMP in Limulus midgut muscle rings. Dopamine (10(-5) M) increased cyclic AMP with a time course consistent with its physiological effects. Forskolin and several methyl xanthines increased Limulus midgut cyclic AMP levels and mimicked the inhibitory effects of dopamine on the isolated midgut preparation. Cyclic nucleotide analogues also produced dopamine-like effects on the isolated midgut preparation. Inhibition of cyclic nucleotide phosphodiesterase prior to addition of dopamine enhanced the effect of this amine to decrease baseline muscle tension. 4. The inhibitory effects of 10(-5) M dopamine on the midgut persisted in solutions of zero sodium and in the presence of tetrodotoxin. Zero calcium solutions gradually reduced spontaneous midgut activity and the effects of dopamine. Calcium channel blockers did not prohibit dopamine-induced relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract: Plasma and urinary catecholamines were quantified to assess global sympathoadrenal function in rats with preganglionic lesions caused by antibodies to acetyl-cholinesterase (AChE). Rats were given intravenous injections of normal mouse IgG or murine monoclonal anti-acetylcholinesterase IgG (1.5 mg). Five or 16 days afterward, basal blood samples were taken through indwelling arterial cannulae. A few hours later, the rats were immobilized for 10 min in padded restrainers, and another blood sample was drawn. HPLC determinations showed low basal levels of norepinephrine and epinephrine (<0.2 ng/ml in all rat plasma samples). In control rats, immobilization stress increased levels of plasma catecholamines up to 35-fold. In rats tested 5 days after injection of antibody, the norepinephrine response was much smaller (15% of control), and (he epinephrine response was nearly abolished (5% of control). There was some recovery at 16 days after antibody treatment, but stress-induced catecholamine release was still markedly impaired. Reduced stress-induced release: was not accompanied by major changes in tissue epinephrine or norepinephrine (heart, spleen, adrenal glands, and brain), although adrenal dopamine content dropped by 60%. Urinary excretion was studied in parallel experiments to gain insight into the effects of AChE anti-bodies on basal sympathoadrenal activity. Epinephrine, norepinephrine, dopamine, and selected metabolites were quantified in 24-h urine samples collected at frequent intervals for 30 days after antibody injection. No statistically gnificant changes were detected in the urinary output of dopamine, 3-methoxytyramine, normetanephrine, or 3-methoixy-4-hydroxyphenylglycol. On the other hand, epinephrine and norepinephrine output increased sharply at the time of antibody injection and then fell significantly below control levels. Norepinephrine output returned to normal after 2 weeks, but epinephrine output remained depressed. These results are consistent with previous evidence of widespread and persistent antibody-mediated βmade to the preganglionic sympathetic system.  相似文献   

8.
Previously, we reported that intranasal (IN) ACTH(1-24) administration stimulates adrenocortical steroid secretion in normal subjects. To determine the efficiency of transmucosal absorption of ACTH into the adrenal medulla, we measured serum cortisol, aldosterone, epinephrine, norepinephrine and dopamine levels after IN vs. intravenous (IV) administration of 250 microg ACTH(1-24) in 7 healthy adult men (mean age 21.7 +/- 1.2 yr; range, 21 - 24 yr). Blood was collected at 0, 30, 60 and 120 min after administration of ACTH(1-24), and the levels of adrenocortical steroids and catecholamines were measured by specific RIA and HPLC methods, respectively. There were no side effects associated with IN or IV ACTH administration. Consistent with the previous study, serum cortisol and aldosterone increased after IN administration of ACTH(1-24), peaking 30 min after administration. Sixty minutes after IN and IV administration of ACTH, epinephrine levels increased by 41.9 +/- 13.1 % and 63.3 +/- 11.8 %, respectively, and remained elevated throughout the sampling period. Thirty minutes after IN or IV administration of ACTH(1-24), plasma norepinephrine levels increased by 55.9 +/- 13.4 % and 73.7 +/- 15.0 %, respectively, peaking 30 min after ACTH(1-24) administration, and decreasing to basal levels within 60 min. Plasma dopamine levels did not change after IN administration of ACTH(1-24). Adrenocortical steroid and catecholamine levels did not increase after IN administration of saline. These results demonstrate that IN administration of ACTH(1-24) not only stimulates adrenocortical steroids, but also epinephrine and norepinephrine.  相似文献   

9.
A method successfully coupling capillary electrophoretic separation to time-of-flight mass spectrometric (TOFMS) detection for the simultaneous analysis of catecholamines (dopamine, norepinephrine, and epinephrine) and their O-methoxylated metabolites (3-methoxytyramine, normetanephrine, and metanephrine) is described. The inner capillary wall was coated with polyvinyl alcohol in order to obtain baseline resolution of catecholamines and metanephrines and to ensure reproducibility without extensive restorative washing of the capillary. Using electrokinetic injection, detection limits of 0.3 microM for dopamine and norepinephrine, 0.2 microM for 3-methoxytyramine and normetanephrine, and 0.1 microM for epinephrine and metanephrine were achieved with standard solutions. The usefulness of this approach was demonstrated by applying the developed method to the analysis of a spot collection of human urine from a healthy volunteer. The catecholamines and metanephrines were removed from the urine samples and preconcentrated by simultaneous SPE on cation-exchange sorbents. The recoveries of all analytes, with the exception of epinephrine (75%), were over 80%. Catecholamines and metanephrines in the urine samples were quantitated using 3,4-dihydroxybenzylamine as an internal standard. Submicromolar concentrations, consistent with the catecholamine and metanephrine levels reported for normal human urine, were detected.  相似文献   

10.
1. Rainbow trout (Oncorhynchus mykiss) were exposed to 0.5 or 5.0 microM of diethyldithiocarbamate (DDC) or amylxanthate (AX) for 24 hr. 2. Both DDC (0.5-5.0 microM) and AX (5.0 microM) significantly decreased norepinephrine and epinephrine levels in the head kidney as well as the quotients epinephrine/dopamine and/or norepinephrine/dopamine. 3. The results probably reflect an inhibition of dopamine-beta-hydroxylase, the enzyme responsible for the synthesis of norepinephrine and epinephrine from dopamine. 4. It is concluded that an exposure of fish to these complexing agents could disturb physiological processes controlled by catecholamines. 5. Diethyldithiocarbamate may prove to be a valuable pharmacological tool for the study of catecholamine function in fish.  相似文献   

11.
Plasma free catecholamines rise during exercise, but sulfoconjugated catecholamines reportedly fall. This study examined the relationship between exercise intensity and circulating levels of sulfoconjugated norepinephrine, epinephrine, and dopamine. Seven exercise-trained men biked at approximately 30, 60, and 90% of their individual maximal oxygen consumption (VO2max) for 8 min. The 90% VO2max period resulted in significantly increased plasma free norepinephrine (rest, 219 +/- 85; exercise, 2,738 +/- 1,149 pg/ml; P less than or equal to 0.01) and epinephrine (rest, 49 +/- 49; exercise, 555 +/- 516 pg/ml; P less than or equal to 0.05). These changes were accompanied by consistent increases in sulfoconjugated norepinephrine at both the 60% (rest, 852 +/- 292; exercise, 1,431 +/- 639; P less than or equal to 0.05) and 90% (rest, 859 +/- 311; exercise, 2,223 +/- 1,015; P less than or equal to 0.05) VO2max periods. Plasma sulfoconjugated epinephrine and dopamine displayed erratic changes at the three exercise intensities. These findings suggest that sulfoconjugated norepinephrine rises during high-intensity exercise.  相似文献   

12.
A novel, multidimensional on-line SPE-LC method with electrochemical detection is described for the fully automated and direct analysis of the catecholamines norepinephrine, epinephrine and dopamine in urine. The integrated extractive clean-up of the raw biofluid is based on a SPE-column packed with restricted access material (RAM) which is modified with the affinity ligand nitrophenylboronic acid. The method was fully validated according to a recent approach based on an accuracy profile. The acceptance limits were set at +/-15% of the nominal concentration values. The method was found accurate over a concentration range from 15 to 500 microg/l for norepinephrine, from 5 to 500 microg/l for epinephrine and from 50 to 500 microg/l for dopamine. The relative risk for the use of the validated method in routine analysis was also assessed based on this validation strategy. It was found that at most 3.5% of future sample measurements will fall outside the acceptance limits. This demonstrates the high reliability of the analytical method described. Moreover, the measurements uncertainties were deduced from the validation experiments without any additional effort.  相似文献   

13.
The authors studied plasma renin activity (PRA), urinary epinephrine, norepinephrine and dopamine excretion and their mutual relationships in 54 healthy subjects under basal (recumbent) conditions and age-related orthostatic changes in these parameters. The test subjects were divided into six 10-years groups, according to their year of birth (1901-1910 to 1951-1960). In the oldest groups (1901-1910 and 1911-1920), both basal PRA values and norephrine and epinephrine excretion and their postural increase were smaller than in younger subjects. Conversely, urinary dopamine excretion and the dopamine/norepinephrine and epinephrine ratio rose with advancing age. There were no significant differences between the plasma sodium and potassium concentrations in the various groups. Urinary aldosterone excretion was slightly higher in the oldest group than in the others, but was still within the control value limits. The intravenous administration of Inderal reduced both resting PRA values and the orthostatic increase in the youngest age groups, so that their PRA approached the values in older subjects. Higher norepinephrine and epinephrine excretion and the lower dopamine/norepinephrine and epinephrine in young subjects may play a role in their higher PRA, especially in the orthostatic reaction. Diminution of sympathetic activity, with lower norepinephrine and epinephrine excretion and relatively high dopamine excretion, may have a direct bearing on the lower PRA values in older subjects. The diminished capacity of older subjects for catecholamine mobilization and raised renin secretion during an orthostatis stress may be related to the higher incidence of orthostatic forms of hypotension in old age.  相似文献   

14.
Previous research established a relationship between circulating sulfoconjugated norepinephrine (NE-SO4) and oxygen consumption at various exercise intensities. In this study, the stability of the NE-SO4 response was examined during sustained exercise at a constant relative intensity. Seven trained men bicycled at 78 +/- 3% of their maximal O2 consumption for 28 min and then rested on the ergometer for a comparable duration. After a 30-min rest, plasma samples were collected through an indwelling catheter at 7-min intervals during the exercise and recovery periods. Free NE and epinephrine increased sixfold during exercise. These changes were accompanied by increases in sulfoconjugated catecholamines, but only NE-SO4 achieved statistical significance (rest, 712 +/- 602; exercise, 1,329 +/- 1,163 pg/ml). This occurred at three collection periods (14, 21, and 28 min). Approximately 35, 52, and 95% of NE, epinephrine, and dopamine, respectively, existed as sulfoconjugated during exercise. Subject variation was present in the sulfoconjugated catecholamine response that could not be attributed to corresponding differences in circulating free catecholamine release. These findings implicate blood flow as a factor in the sulfoconjugation of NE, but not epinephrine or dopamine.  相似文献   

15.
Both isomers of epinephrine sulfate were synthesized, unequivocally identified by 1H-NMR and highly purified from catecholamines (less than 90 ppm). Bacterial as well as pig liver arylsulfatase A and B demonstrated a higher substrate turnover of epinephrine-4-sulfate, norepinephrine-4-sulfate and dopamine-4-sulfate as compared to the 3-sulfate isomers. The arylsulfatase B however, is less important for the deconjugation of these sulfoconjugates than arylsulfatase A. Since arylsulfatase A occurs in most human tissues, it might be of physiological significance in the deconjugation of the catecholamine sulfate isomers. Furthermore the kinetic data at pH 7.4 and 6.9 suggest the increased cleavage of the sulfate group, e.g. during exercise-induced acidosis. In contrast to results reported in the literature, dopamine sulfates were no substrates of dopamine beta-hydroxylase.  相似文献   

16.
The sensitive specific radioenzymatic procedure for determination of catecholamines originally described from our laboratory by Coyle and Henry (1) has been optimized for use in assay of human plasma levels of dopamine, norepinephrine and epinephrine. Dopamine and the total of norepinephrine and epinephrine are assayed by 0-methylation while norepinephrine is determined by N-methylation. Epinephrine is calculated from the difference between the 0-methylation and N-methylation procedures. In a group of 13 normal subjects, plasma levels of epinephrine were found to be 67 ± 9.2 pg/ml, norepinephrine 208 ± 16.9 pg/ml and dopamine 33 ± 8.1 pg/ml. Dopamine determinations are of low reliability because of relatively high blanks and necessary corrections.  相似文献   

17.
Vascular reactivity to norepinephrine in rats with cirrhosis of the liver   总被引:2,自引:0,他引:2  
Vascular reactivity to norepinephrine was studied in rats with early cirrhosis of the liver and in control rats. Cirrhotic rats showed water and sodium retention but not ascites. Studies were performed in whole animals, isolated hindquarters, and isolated femoral arteries. Plasma catecholamine levels were measured by radioenzymoassay and their urinary metabolites by gas-liquid chromatography. Plasma norepinephrine was 331 +/- 49 pg/mL (mean +/- SEM) in control rats and 371 +/- 66 pg/mL in cirrhotic animals (p greater than 0.05). No differences in plasma epinephrine or dopamine were observed. Urinary excretion of catecholamine metabolites was increased in cirrhotic rats. These data suggest a moderate activation of the sympathetic nervous system. In basal conditions, cirrhotic rats showed lower mean arterial pressure than controls (101 +/- 4 vs. 116 +/- 4 mmHg (1 mmHg = 133.3 Pa); p less than 0.01). However, perfused hindlimb resistance was similar in cirrhotic and in control animals. In the whole animal and in the perfused hindquarter, the contractile response to norepinephrine was similar for control and for cirrhotic rats. The contractile response to norepinephrine exhibited by isolated femoral arteries was similar in those from cirrhotic and control rats. This indicates that the peripheral vascular bed has a well-maintained ability to constrict in response to norepinephrine, suggesting that circulatory abnormalities in early experimental cirrhosis are not caused by refractoriness of the vascular smooth muscle to norepinephrine.  相似文献   

18.
Analysis of catecholamines (epinephrine, norepinephrine and dopamine) in plasma and urine is used for diagnosis and treatment of catecholamine-producing tumors. Current analytical techniques for catecholamine quantification are laborious, time-consuming and technically demanding. Our aim was to develop an automated on-line solid phase extraction method coupled to high performance liquid chromatography–tandem mass spectrometry (XLC–MS/MS) for the quantification of free catecholamines in urine. Five microlitre urine equivalent was pre-purified by automated on-line solid phase extraction, using phenylboronic acid complexation. Reversed phase (pentafluorophenylpropyl column) chromatography was applied. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Urinary reference intervals were set in 24-h urine collections of 120 healthy subjects. XLC–MS/MS was compared with liquid chromatography with electrochemical detection (HPLC–ECD). Total run-time was 14 min. Intra- and inter-assay analytical variations were <10%. Linearity was excellent (R2 > 0.99). Quantification limits were 1.47 nmol/L, 15.8 nmol/L and 11.7 nmol/L for epinephrine, norepinephrine and dopamine, respectively. XLC–MS/MS correlated well with HPLC–ECD (correlation coefficient >0.98). Reference intervals were 1–10 μmol/mol, 10–50 μmol/mol and 60–225 μmol/mol creatinine for epinephrine, norepinephrine and dopamine, respectively. Advantages of the XLC–MS/MS catecholamine method include its high analytical performance by selective PBA affinity and high specificity and sensitivity by unique MS/MS fragmentation.  相似文献   

19.
A (--)-[3H]norepinephrine binding site was identified in a crude synaptosomal fraction isolated from bovine hypothalamus which bound norepinephrine rapidly, reversibly, and stereospecificially. The results were most consistent with binding of (-)-[H]norepinephrine to the carrier molecule used to translocate biogenic amines into synaptic vesicles. The binding studies indicated that specific binding of (--)-[3H]norepinephrine to the crude synaptosomal fraction was greatly enhanced by 4 mM MgCl2 pand 1 mM ATP. The increased binding of (--)-[3H5norepinephrine also occurred in the presence of MgCl2 and GTP, but AMP, adenosine and adenyl-5'-yl imidodiphosphate would not substitute for ATP. Neither CaCl2 nor ZnSO4 could be substituted for the MgCl2. In the presence of MgCl2 and ATP, the dissociation constant for (--)-[3H]norepinephrine was 280 nM with a specific binding site density of 4.8 pmol/mg protein. Binding was stereospecific with ratios of 15, 4, and 6.5 for the affinities of (--)-isomers to (+)-isomers for norepinephrine, epinephrine and isoproterenol, respectively. Drug competition studies, conducted in the presence of Mg2+ and ATP, indicated that (--)-epinephrine, (--)-norepinephrine, dopamine and serotonin had inhibitory constants ranging from 0.25 to 0.8 micron with (--)-isoproterenol and tyramine having inhibitory constants around 2 micron. Reserpine was the most potent inhibitor having an inhibition constant of 8.6 +/- 0.3 nM. The binding data were not consistent with the specific site being the alpha- or beta-receptors for norepinephrine, the Uptake1 Site for norepinephrine into synaptosomes or the metabolizing enzymes for norepinephrine.  相似文献   

20.
The aim of this study was to examine the distribution of dopamine and norepinephrine in the proximal alimentary tract of the rat and to assess the contributions of sympathetic and vagal fibers to the tissue concentrations of both catecholamines. Tissues were extracted in perchloric acid and the catecholamines were separated by high pressure liquid chromatography and detected electrochemically. In untreated rats (controls) both catecholamines were concentrated in the gastric muscle but norepinephrine levels were 6-8 times higher (corpus, dopamine 35 +/- 7 ng . g-1, norepinephrine 265 +/- 50 ng . g-1, mean +/- SE, n = 6). In the mucosa norepinephrine concentrations were 10-12 times higher (corpus, dopamine 12 +/- 3 ng . g-1, norepinephrine 140 +/- 26 ng . g-1). Chemical sympathectomy (6 hydroxydopamine, 100 mg . kg-1 ip 3 days) significantly reduced dopamine concentrations in muscle and norepinephrine in muscle, mucosa, pylorus and duodenum. In all tissues the effects on norepinephrine were greater. Surgical vagotomy significantly reduced dopamine concentrations in the gastric muscle, but not the mucosa. Norepinephrine concentrations in the stomach of vagotomized rats were significantly reduced only in the pylorus. Differences in the relative concentrations of dopamine and norepinephrine in gastric tissues of the normal rat and differences in the effects of sympathectomy and vagotomy suggest that dopamine and norepinephrine exist, to an extent, in separate populations of cells and that dopamine is not merely a precursor of norepinephrine. Gastric mucosal dopamine, which was mainly unaffected by either treatment, may exist in APUD cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号