首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O H?pp?l?  M Lakomy 《Histochemistry》1989,92(3):211-218
The localization and distribution of calcitonin gene-related peptide (CGRP) and bombesin/gastrin-releasing peptide (GRP) immunoreactivity were studied in the rat, guinea pig and pig female genital organs with indirect immunohistochemical technique. In the rat, guinea pig and pig, CGRP and GRP immunoreactivities were localized in nerve fibers of the uterus, ovary and oviduct. Generally, CGRP-immunoreactive nerve fibers were intensely stained, while GRP-immunoreactive nerve fibers exhibited moderate immunoreactivity. The number of GRP-immunoreactive nerve fibers in these organs was lower in comparison with that of CGRP-immunoreactive nerve fibers. The pattern of distribution of these nerve fibers was very similar in different genital organs of all species studied. In the uterus of rat, guinea pig and pig, CGRP- and GRP-immunoreactive nerve fibers and nerve bundles were observed in the muscular membrane and around blood vessels. Some delicate CGRP- and GRP-immunoreactive nerve fibers were also present in the submucous layer of the uterus. In the oviduct, CGRP- and GRP-immunoreactive nerve fibers were seen in the muscular membrane, around blood vessels and in the submucous layer. In the ovary, CGRP- and GRP-immunoreactive nerve fibers were distributed in medullary stroma, in close contact with blood vessels and between follicles of different stages of development.  相似文献   

2.
Immunoreactivity to neuron-specific enolase (NSE), a specific neuronal marker, and calcitonin gene-related peptide (CGRP) was localized in lingual taste papillae in the pigs. Sequential staining for NSE and CGRP by an elution technique allowed the identification of neuronal subpopulations. NSE-staining revealed a large neuronal network within the subepithelial layer of all taste papillae. NSE-positive fibers then penetrated the epithelium as isolated fibers, primarily in the foliate and circumvallate papillae, or as brush-shaped units formed by a multitude of fibers, especially in the fungiform papillae and in the apical epithelium of the circumvallate papilla. Taste buds of any type of taste papillae were found to express a dense subgemmal/intragemmal NSE-positive neuronal network. CGRP-positive nerve fibers were numerous in the subepithelial layer of all three types of taste papillae. In the foliate and circumvallate papillae, these fibers penetrated the epithelium to form extragemmal and intragemmal fibers, while in the fungiforms, they concentrated almost exclusively in the taste buds as intragemmal nerve fibers. Intragemmal NSE- and CGRP-positive fiber populations were not readily distinguishable by typical neural swellings as previously observed in the rat. The NSE-positive neuronal extragemmal brushes never expressed any CGRP-like immunoreactivity. Even more surprising, fungiform taste buds, whether richly innervated by or devoid of NSE-positive intragemmal fibers, always harboured numerous intragemmal CGRP-positive fibers. Consequently, NSE is not a general neuronal marker in porcine taste papillae. Our observations also suggest that subgemmal/intragemmal NSE-positive fibers are actively involved in synaptogenesis within taste buds. NSE-positive taste bud cells were found in all three types of taste papillae. CGRP-positive taste bud cells were never observed.  相似文献   

3.
Calcitonin gene-related peptide-like and neuron-specific enolase-like immunoreactivity (CGRP-IR and NSE-IR) were surveyed immunohistochemically in the fungi-form, foliate and circumvallate papillae in rats. A dense CGRP-IR network (subgemmal and extragemmal) in the taste papillae is linked to the presence of taste buds, even though CGRP-IR fibers are rarely present in the taste buds. Three typical fiber populations were detected with these two markers. (a) A population of coarse NSE-IR intragemmal fibers characterized by thick neural swellings, never expressing CGRP-immunoreactivity. (b) A population of thin varicose intragemmal NSE/CGRP-IR fibers. (c) A population of subgemmal and extragemmal NSE-/CGRP-IR fibers that partly penetrated the epithelium. The common distribution of CGRP-IR and NSE-IR fibers at the base of taste buds, their differential distribution and morphology within taste buds, added to their restricted nature (gustatory or somatosensory) suggest that a population of CGRP-IR fibers undergoes a target-induced inhibition of its CGRP phenotype while entering the taste buds. The combined use of NSE and CGRP allowed a better characterization of nerve fibers within and between all three types of taste papillae. NSE was also a very good marker for a subtype of taste bud cells in the foliate and in the circumvallate papillae, but no such cells could be observed in the fungiform papillae.  相似文献   

4.
Substance P (SP) and calcitonin gene-related peptide (CGRP) have been found in the perichondrium and within the cartilage canals. It is still unknown whether they exert a direct effect on chondrocytes during joint development. We processed 28 knees of newborn Wistar rats in 7 different fashions to perform histology and immunohistochemistry studies. Positive immunoreactivity against CGRP and SP was found in the inner aspect of the perichondrium in a close contact with chondrocytes. The presence of CGRP and SP indicates the presence of nerves fibers, and precedes the development of cartilage canals. Nerve fibers may play a role in the development of synovial joints before and during the presence of cartilage canals. The presence of CGRP and SP in the cartilage at birth may be involved in the early postnatal maturation of synovial joints. It remains to be determined whether autonomic innervation is later involved in age-related degenerative joint disease.  相似文献   

5.
6.
J C Mak  P J Barnes 《Peptides》1988,9(5):957-963
125I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow.  相似文献   

7.
Summary Calcitonin gene-related peptide immunoreactive (CGRP-IR) nerves in rat were studied as to their distribution and origin in anterior buccal glands, which are unique minor mucous salivary glands in the rat. A moderate number of CGRP-IR nerve fibres were located, mostly perivascularly and around intralobular ducts, but they were also found around acini. The latter fibres were mainly of sensory origin, as suggested by their disappearance after denervation of the ophthalmic and maxillary branches of the trigeminal nerve. On the contrary, CGRP-IR nerves around interlobular ducts and some of those in a perivascular location remained both after sensory denervation and after extirpation of the sympathetic superior cervical ganglion. Whether these fibres originate in dorsal root ganglia C3−C4 or represent parasympathetic fibres is not known. Based on the present data and the previous findings showing a regulatory role of CGRP both on blood and salivary flow, it is possible that CGRP in sensory, and possibly also in parasympathetic nerves, participates in the regulation of reflex blood flow and salivary secretion in the anterior buccal gland of the rat.  相似文献   

8.
Summary Parafollicular C cells of the rat thyroid contain several immunoreactive peptides including calcitonin (CT), calcitonin gene-related peptide (CGRP), somatostatin and a C-terminal gastrin/CCK immunoreactive epitope as shown at the light-and electron-microscopical levels. Adult thyroid C cells are strongly immunoreactive to CT and most of the cells also react strongly with CGRP antisera and weakly with a gastrin/CCK antiserum. The latter antiserum may cross-react with CGRP. This cross-reactivity probably only occurs at very high concentrations of CGRP observed in adult thyroid C cells, but not in intrathyroidal CGRP-containing nerves, nor in early neonatal C cells. In neonatal rats, somatostatin immunoreactive C cells are numerous and most of these cells are also CT and CGRP immunoreactive. In contrast, only few C cells display somatostatin immunoreactivity in adult rat thyroids. Sequential staining experiments revealed that some thyroidal C cells simultaneously express all four types of immunoreactivity. At the electron microscopical level, all of these immunoreactivities were observed in secretory granules of C cells. Double- and triple-staining experiments, moreover, documented that some peptides are co-localized in the same granules.  相似文献   

9.
《Bone and mineral》1991,12(2):73-79
Pig thyroid glands were surgically isolated in situ and perfused with autologous blood to which was added known concentrations of calcitonin gene-related peptide (αCGRP). When thyroids were perfused with measured concentrations of CGRP within the range of 0.6–600 nM, the secretion rate of calcitonin (CT) was stimulated while the release of T3, T4, and somatostatin remained unchanged. Specific binding of 125I-CGRP to pig thyroid plasma membranes was demonstrated, and binding was inhibited by unlabelled CGRP but not by CT or by other peptides unrelated structurally to CGRP. The findings indicate that the pig thyroid gland contains plasma membrane binding sites for CGRP and that CGRP is capable of stimulating the secretion of CT.  相似文献   

10.
Parafollicular C cells of the rat thyroid contain several immunoreactive peptides including calcitonin (CT), calcitonin gene-related peptide (CGRP), somatostatin and a C-terminal gastrin/CCK immunoreactive epitope as shown at the light- and electron-microscopical levels. Adult thyroid C cells are strongly immunoreactive to CT and most of the cells also react strongly with CGRP antisera and weakly with a gastrin/CCK antiserum. The latter antiserum may cross-react with CGRP. This cross-reactivity probably only occurs at very high concentrations of CGRP observed in adult thyroid C cells, but not in intrathyroidal CGRP-containing nerves, nor in early neonatal C cells. In neonatal rats, somatostatin immunoreactive C cells are numerous and most of these cells are also CT and CGRP immunoreactive. In contrast, only few C cells display somatostatin immunoreactivity in adult rat thyroids. Sequential staining experiments revealed that some thyroidal C cells simultaneously express all four types of immunoreactivity. At the electron microscopical level, all of these immunoreactivities were observed in secretory granules of C cells. Double- and triple-staining experiments, moreover, documented that some peptides are co-localized in the same granules.  相似文献   

11.
In this immunohistochemical study, the ontogenic development of calcitonin-gene-related peptide (CGRP) in the rat thyroid was investigated and compared with that of calcitonin using the indirect-immunofluorescence method. Parafollicular cells with immunoreactivity to both CGRP and calcitonin first appeared at an early stage of gestation (days 17 and 18) in the central portion of the thyroid. Cells immunoreactive to CGRP and calcitonin had became numerous by gestational day 22. After postnatal day 7, CGRP- and calcitonin-immunoreactive (C-IR) cells increased rapidly both in number and in the intensity of their fluorescence. In 14- to 90-day old rats, many intensely immunoreactive cells were distributed in the central portion of the thyroid. The cells immunoreactive to CGRP and to calcitonin had an almost identical ontogenic appearance. In 14-day-old and adult rats, C-IR cells also exhibited CGRP immunostaining, suggesting that these cells simultaneously produce and store CGRP during ontogeny.  相似文献   

12.
Summary In this immunohistochemical study, the ontogenic development of calcitonin-gene-related peptide (CGRP) in the rat thyroid was investigated and compared with that of calcitonin using the indirect-immunofluorescence method. Parafollicular cells with immunoreactivity to both CGRP and calcitonin first appeared at an early stage of gestation (days 17 and 18) in the central portion of the thyroid. Cells immunoreactive to CGRP and calcitonin had became numerous by gestational day 22. After postnatal day 7, CGRP- and calcitonin-immunoreactive (CIR) cells increased rapidly both in number and in the intensity of their fluorescence. In 14- to 90-day old rats, many intensely immunoreactive cells were distributed in the central portion of the thyroid. The cells immunoreactive to CGRP and to calcitonin had an almost identical ontogenic appearance. In 14-day-old and adult rats, C-IR cells also exhibited CGRP immunostaining, suggesting that these cells simultaneously produce and store CGRP during ontogeny.  相似文献   

13.
The overflow of calcitonin gene-related peptide like-immunoreactivity (CGRP-LI) in the nasal venous effluent upon antidromic stimulation of the maxillary division of the trigeminal nerve with 6.9 Hz for 3 min or upon capsaicin (0.3 mumol bolus injection) were analysed in the nasal mucosa of sympathectomized pentobarbital anaesthetized pigs. The overflow of CGRP-LI upon antidromic stimulation displayed a slower appearance in the venous effluent than the overflow upon bolus injection of capsaicin. The vascular effects as revealed by the arterial blood flow, the venous blood flow, the blood volume of the nasal mucosa, i.e., the filling of the capacitance vessels and the superficial mucosal blood flow as revealed by the laser-Doppler signal were also studied. Antidromic stimulation of the trigeminal nerve as well as capsaicin bolus injection induced a marked vasodilation which was parallel to the overflow of CGRP. However, capsaicin bolus injection also resulted in a marked increase in the mean arterial blood pressure which may be due to reflex activation of sympathetic fibers. In conclusion, we have demonstrated that chemical stimulation with capsaicin as well as antidromic stimulation of nasal sensory nerves in sympathectomized animals induces both vasodilation and overflow of CGRP-LI in vivo. This indicates that CGRP may contribute to the sensory regulation of the microcirculation in the nasal mucosa.  相似文献   

14.
We demonstrated the localization of metallothionein (MT) in rat uterus and ovaries and in guinea pig mammary glands. During the cyclic changes from one estrous period to the next, strong MT immunostaining was found in the glandular epithelium of the endometrium and weak immunostaining was observed in the simple columnar epithelium. Interestingly, during estrus, the intensity of MT immunostaining decreased in the cytoplasm, whereas during metestrus, diestrus, and proestrus the intensity of strong and similar immunostaining was observed in both the cytoplasm and nucleus. During proestrus and estrus, the number of vaginal epithelial cells containing MT increased on the luminal side of the epithelium and inside the lumen. In rat ovary, strong immunostaining was observed in the cytoplasm and nucleus of granulosa-lutein cells of the corpus luteum and in the cytoplasm of the ovum. In mammary gland of non-pregnant guinea pig, very strong but scattered MT immunostaining was demonstrated in both cytoplasm and nucleus of some epithelial cells of the lactiferous ducts. The mammary tissue of the pregnant guinea pig showed an increase in MT staining in alveolar cells that had proliferated due to pregnancy. The presence of MT in the female reproductive organs, the tissues of which actively grow under the control of female sex hormones, indicates some as yet unknown association of MT with cell proliferation and differentiation.  相似文献   

15.
This study was designed to compare, on a molar basis, the effect of chronic bombesin, gastrin-releasing peptide (GRP) and caerulein on pancreatic growth in the rat. These 3 peptides were administered s.c. 3 times daily for 4 days at the following concentrations: 0.036, 0.36, 3.6 and 7.2 nmol/kg of body weight. Bombesin and GRP induced pancreatic growth in a dose-dependent manner from 3.6 nmol/kg. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents but not in DNA content suggesting cellular hypertrophy. Caerulein exerted a biphasic effect on pancreatic growth, inducing cellular hypertrophy at low doses since 0.36 nmol/kg and atrophy with the highest dose (7.2 nmol/kg). Bombesin and caerulein (until 3.6 nmol/kg) increased the pancreatic content in chymotrypsin more than in amylase. The 7.2 nmol/kg caerulein treatment depressed all enzyme activities while the same dose of GRP increased pancreatic lipase content. It is concluded that (1) bombesin and GRP are equipotent trophic factors for the pancreas; (2) caerulein is the most potent factor and exerts a biphasic effect on pancreatic growth; (3) pancreatic growth and synthesis and/or secretion of enzymes are not regulated through the same mechanism.  相似文献   

16.
Pretreatment with capsaicin caused a depletion of substance P (SP)-, neurokinin A (NKA)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity (-LI) from the trigeminal ganglion, dura mater and cerebral arteries. The effect of capsaicin on isolated basilar arteries of guinea pig resulted in a biphasic relaxant response of histamine precontracted vessels. The first phase of the capsaicin-induced relaxation was absent in capsaicin-treated guinea pigs. Furthermore, repeated administration of capsaicin decreased the first but not the second phase of relaxation, supporting the view that a stored agent was released, while the second phase probably was due to a direct effect of capsaicin per se. The biphasic effect was not modified by the SP antagonist Spantide in a concentration that blocks tachykinin response (3.10(-6) M), nor by removal of the endothelium. There was no significant difference in pD2 values (-log concentration eliciting half maximum relaxation) between relaxations induced by SP, NKA, neurokinin B, neuropeptide K or CGRP in capsaicin pretreated as compared to vehicle-treated animals. These results are in support of the assumption that CGRP is involved in the capsaicin-induced relaxation caused by release of vasoactive agents from sensory afferent nerves.  相似文献   

17.
18.
Niu WZ  Gao YL  Liu P  Liu BY  Ye G 《生理学报》2000,52(3):259-262
本文目的在于深入研究降钙素基因相关肽(CGRP)对豚鼠冠状血流量以及心脏传导系统各部分的作用。采用Langendorff法灌流心脏,同步记录心脏表面电图和希氏束电活动。观察应用CGRP前后的冠脉流量、自主心率、在相同心房周期下的房室结(AH)及希浦系传导时间(HV)、心脏出现3:2文氏传导及2:1房室传导阻滞所需的最长起搏周期(PCL3:2,PCL2:1)。CGRP(3-30nmol/L)可显著增  相似文献   

19.
We assessed the central and peripheral biological actions of human and rat calcitonin and calcitonin gene-related peptide (CGRP). After intravenous administration, human and rat calcitonin, but neither human nor rat CGRP significantly decreased plasma calcium and phosphorus concentrations in awake, freely moving rats. After intracerebroventricular as well as after intravenous administration, human and rat calcitonin and human and rat CGRP significantly inhibited gastric acid secretion in conscious rats. Intracerebroventricular administration of rat calcitonin did not alter plasma calcium and phosphorus concentrations. Linear, partially protected CGRP and calcitonin did not exhibit any biological effects. These studies indicate that calcitonin, but not CGRP, affects calcium and phosphorus homeostasis while both peptides decrease gastric acid secretion similarly. Furthermore, these studies support the hypothesis that the calcium and phosphorus lowering effects of calcitonin are peripheral while the gastric inhibiting actions of the calcitonin and CGRP are mediated by the central nervous system.  相似文献   

20.
Calcitonin gene-related peptide (CGRP) has been implicated in the trophic regulation of acetylcholine receptors and G4 acetylcholinesterase at the rat neuromuscular junction. Since these latter molecules exhibit significant changes with advancing age, we examined the possibility that certain aspects of CGRP transport are also influenced by aging. Double nerve ligations and CGRP radioimmunoassay of 3-mm nerve segments permitted the assessment of the peptide's apparent transport rates in sciatic nerves from 3-, 12-, and 24-month-old Fischer 344 rats. Results confirm that CGRP is conveyed by anterograde axoplasmic transport; more importantly, they suggest that CGRP is also transported retrogradely, but in smaller amounts and at slower rates. In addition, our findings indicate that the apparent rates of CGRP transport in both directions significantly decline with advancing age. These data are consistent with the notion that changes in CGRP delivery may contribute to age-related changes in junctional acetylcholine receptors and acetylcholinesterase.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号