首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of work intensity and duration on the white blood cell (WBC), lymphocyte (L) and platelet (P) count response to exercise was studied in 16 trained subjects (22 +/- 5.4 years, means +/- SD). They performed three cyclo-ergospirometric protocols: A) 10 min at 150 W followed by a progressive test (30 W/3 min) till exhaustion; B) constant maximal work (VO2max); C) a 45 min Square-Wave Endurance Exercise Test (SWEET), (n = 5). Arterial blood samples were taken: at rest, submaximal and maximal exercise in A; maximal exercise in B; 15th, 30th and 45th min in the SWEET. Lactate, [H+], PaCO2, PaO2, [Hct], Hb, cortisol, ACTH, total platelet volume (TPV), total blood red cell (RBC), WBC, L and P were measured. At 150 W, WBC, L, P, and TPV increased. VO2max did not differ between A and B, but a difference was found in total exercise time (A = 25 +/- 3 min; B = 7 +/- 2 min, p less than 0.001). In A, at VO2max, the increase was very small for Hct, [Hb], and RBC (10%), in contrast with large changes for WBC (+93%), L (+137%), P (+32%), TPV (+35%), [H+] (+39%), lactate (+715%), and ACTH (+95%). At VO2max there were no differences in these variables between A and B. During the SWEET: WBC, L, P, TPV and ACTH increased at the 15th min as much as in VO2max, but no difference was observed between the 15th, 30th and 45th min, except for ACTH which continued to rise; the lactate increase during the SWEET was about half (+341%) the value observed at VO2max, and [H+] did not vary with respect to values at rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The present study was designed to test if both the intensity and duration of the 45-min Square-Wave Endurance Exercise Test (SWEET) would produce changes in serum enzyme activities. Nine men, four sedentary (S) and five athletes (A), performed VO2 max and SWEET, at their Maximal Intensity of Endurance (MIE45) as defined by maximal heart rate and the impossibility of maintaining MIE 45 + 5% for 45 min. Arterial blood was sampled at rest (R), exercise (Ex) (45th min) and during recovery (15th min) for measurements of levels of Haemoglobin (Hb), Haematocrit (Hct), pH and seven serum enzymes: Creatine kinase (CPK), Hexose-phosphate isomerase (PHI), Aldolase (ALD), Lactate dehydrogenase (LDH), Malate dehydrogenase (MDH), Aspartate amino-transferase (ASAT or GOT), and Alanine aminotransferase (ALAT or GPT). Five enzymes increased significantly during exercise (MIE45), the delta % (Ex - R/R) increases were as follows: PHI (72%), MDH (28%), LDH (21%), CPK (17%), and GOT (13.5%), whilst only a 10% increase was observed for Hct and Hb and there was no significant change in the arterial pH. There was no correlation between the delta % of Hb, Hct, pH, and the results for the enzymes. Thus, it does not seem that haemoconcentration and arterial blood acidosis which occur during exercise are only at the origin of the observed increases in enzymes. A difference between "sedentary" and "athletes" subjects was found at rest and exercise (delta % = A - S/S) for CPK (R = 222%; Ex = 235%), GOT (R = 90%; Ex = 75%) and ALD (R = 99%; Ex = 54%). These results suggest that the MIE45, by measured increases in enzymatic activity, seems to require great muscular effort.  相似文献   

3.
A young women's exercise/fitness class tested the idea that administration of supplemental iron would prevent "sports anemia" that may develop during exercise and training and improve iron status of exercising females of menstrual age. Fifteen women (aged 18-37) were selected for each of three treatment groups: (1) no supplemental iron; (2) 9 mg X d-1 of Fe; and (3) 18 mg X d-1 of Fe (1 US Recommended Daily Allowance). Women exercised at approximately 85% of maximal heartrate for progressively increasing lengths of time in a jogging program and worked up to 45 min of exercise 4 d X week-1 for 8 weeks. Hematologic analysis was performed in weeks 1, 5, and 8. A significant decline in hemoglobin (Hb) concentration and hematocrit (Hct) was observed at week 5 when all data were examined without regard for iron intake; these red cell indices returned to pre-exercise levels by week 8. Reduction of mean cell hemoglobin concentration (MCHC) indicated that the midpoint decline was not caused by simple hemodilution during exercise. Serum ferritin (SF) concentration changed in parallel with Hb and Hct. Although the midpoint decline in SF was not statistically significant, it ruled out the possibility that turnover of red cell iron was directed to storage. Lowered MCHC and SF suggested lower availability of iron during the synthesis of a new generation of red cells. Few iron treatment effects of magnitude were observed. Iron did not prevent the midpoint decline in Hb concentration. Iron intake did not affect SF, serum iron, transferrin saturation, or final Hb, and Hct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
These studies investigated circulatory, respiratory and metabolic responses in four Thoroughbred geldings during the first 400 metres of galloping (mean speed 14.4 +/- 0.38 m.s-1), cantering (mean speed 10.0 +/- 0.61 m.s-1) and walking (mean speed 1.58 +/- 0.05 m.s-1) from a standing start. A radio-controlled device which collected blood samples anaerobically during each 100 m section of the exercise track allowed analyses of changes in and functional relationships of the variables measured. During the 400 m gallop, the mean heart rate (HR) increased from 125 to 201 beats.min-1 and the haematocrit (Hct) from 0.513 to 0.589 l/l-1. The haemoglobin [Hb], lactate [LA] and potassium [K+] concentrations increased significantly, while the pH and the partial pressure of oxygen (PaO2) decreased significantly. The arterial partial pressure of carbon dioxide (PaCO2) and the plasma bicarbonate concentration did not change significantly. There were significant correlations between HR and Hct, HR and [Hb], HR and PaO2, HR and pH, HR and PvCO2, HR and [LA], HR and [K+], pH and [K+], Hct and PaO2, [Hb] and PaO2, PaCO2 and PaO2, [LA] and PaO2, pH and PaO2, [K+] and PaO2, stride frequency and PaO2. With the exception of the PvCO2 which increased significantly, changes in venous blood during the gallop were in the same direction as those of arterial blood. Thirty seconds before the start of the gallop, both HR and [Hb] were significantly higher than at rest, providing an approximate three-fold increase in oxygen delivery compared to that of the resting state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Response of red cell and plasma volume to prolonged training in humans   总被引:6,自引:0,他引:6  
To clarify the role of progressive heavy training on vascular volumes and hematologic status, seven untrained males [maximal O2 uptake (VO2max) = 45.1 +/- 1.1 (SE) ml.kg-1.min-1] cycled 2 h/day at an estimated 62% of VO2max. Training was conducted five to six times per week for approximately 8 wk. During this time, VO2max increased (P less than 0.05) by 17.2%. Plasma volume (PV) measured by 125I increased (P less than 0.05) from 3,068 +/- 104 ml at 0 wk to 3,490 +/- 126 ml at 4 wk and then plateaued during the remaining four wk (3,362 +/- 113 ml). Red cell (RBC) mass (RCM) measured by 51Cr-labeled RBC did not change during the initial 4 wk of training (2,247 +/- 66 vs. 2,309 +/- 128 ml). As well, no apparent change occurred in RCM during the final 4 wk of training when RCM was estimated using PV and hematocrit (Hct). Collectively, PV plus RCM, expressed as total blood volume (TBV), increased (P less than 0.05) by 10% at 4 wk and then stabilized for the final 4 wk. During the initial phase of training, reductions (P less than 0.05) were also noted in Hct (4.6%), hemoglobin (Hb, 4.0%), and RBC count (6.3%). In contrast, an increase in mean cell volume (MCV, 1.7%) and mean cell Hb (2.3%) was observed (P less than 0.05). From 4 to 8 wk, no further changes (P greater than 0.05) in Hb, RBC, and MCV were found, whereas both mean cell Hb and Hct returned to pretraining levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

8.
We investigated changes in arterial PCO2 (PaCO2) and pulmonary ventilation (VE) in normal, carotid chemoreceptor-denervated, and hilar nerve-denervated ponies during intravenous lactic acid infusion at rest and treadmill exercise at 1.8 mph-5% grade (mild) and 1.8 mph-15% grade (moderate). Lactic acid, (0.5 M) infusion of 0.10, 0.13, and 0.20 ml.min-1.kg-1 at rest and mild and moderate exercise increased arterial [H+] linearly throughout the 10 min of acid infusion. At 10 min of infusion, arterial [H+] had increased approximately 20 nmol/l (0.2 pH units) for each condition and group. Under most conditions, the temporal pattern of PaCO2 during acid infusion was biphasic. At rest and during mild exercise in all groups, and in carotid chemoreceptor-denervated ponies during moderate exercise, PaCO2 increased approximately 2 Torr (P less than 0.05) during the first 2 min of acid infusion. However, in normal ponies during moderate exercise, PaCO2 was not changed from control in the first 2 min of infusion. Between 2 and 10 min of infusion at rest and mild and moderate exercise in all groups, there was a 5-Torr significant decrease in PaCO2, which did not differ (P greater than 0.10) between groups. VE increased between 15-30 s and 2 min of infusion, but VE changed minimally between 2 and 10 min of infusion at rest and exercise in all groups of ponies. We conclude that lactacidosis does increase VE at rest and submaximal exercise in the pony.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The metabolic and cardiovascular adjustments of the whole body and skeletal muscle were studied during moderate and severe acute anemia. In 15 anesthetized dogs, venous outflow from the gastrocnemius-plantaris muscle group was isolated. Cardiac output (QT) muscle blood flow (QM), total body and muscle oxygen uptake (VO2) were determined during a control period, and at 30 and 60 min of either (i) moderate anemia (n = 8) in which the mean hematocrit (Hct) was 25% or (ii) progressive anemia (n = 7) in which the mean Hct values were 25% at 30 min and 16% at 60 min of anemia. Muscle VO2, QT, and QM were increased in both groups at 30 min of anemia. By 60 min, QT and QM declined to preanemic control values in the moderate anemia group; whole body VO2 was maintained at the control level. Arterial oxygen transport was the same in the two groups at both 30 and 60 min of anemia despite the difference in Hct at 60 min. Muscle VO2 showed a further and similar rise in both groups between 30 and 60 min of anemia. These data show that the rise in muscle VO2 during acute anemia was not directly proportional to the degree of the hematocrit reduction. Further, the findings suggest that the muscle VO2 response was related to the decrease in arterial oxygen transport.  相似文献   

10.
This study examined plasma volume changes (deltaPV) in humans during periods with or without changes in body hydration: exercise-induced dehydration, heat-induced dehydration and glycerol hyperhydration. Repeated measurements of plasma volume were made after two injections of Evans blue. Results were compared to deltaPV calculated from haematocrit (Hct) and blood haemoglobin concentration ([Hb]). Eight well-trained men completed four trials in randomized order: euhydration (control test C), 2.8% dehydration of body mass by passive controlled hyperthermia (D) and by treadmill exercise (60% of their maximal oxygen uptake, VO2max) (E), and hyperhydration (H) by glycerol ingestion. The Hct, [Hb], plasma protein concentrations and plasma osmolality were measured before, during and after the changes in body hydration. Different Hct and [Hb] reference values were obtained to allow for posture-induced variations between and during trials. The deltaPV values calculated after two Evans blue injections were in good agreement with deltaPV calculated from Hct and [Hb]. Compared to the control test, mean plasma volume declined markedly during heat-induced dehydration [-11.4 (SEM 1.7)%] and slightly during exercise-induced dehydration [-4.2 (SEM 0.9)%] (P < 0.001 compared to D), although hyperosmolality was similar in these two trials. Conversely, glycerol hyperhydration induced an increase in plasma volume [+7.5 (SEM 1.0)%]. These results would indicate that, for a given level of dehydration, plasma volume is dramatically decreased during and after heat exposure, while it is better maintained during and after exercise.  相似文献   

11.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Disposal of blood [1-13C]lactate in humans during rest and exercise   总被引:1,自引:0,他引:1  
Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1-13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.  相似文献   

13.
A group of 15 competitive male cyclists [mean peak oxygen uptake, VO2peak 68.5 (SEM 1.5 ml x kg(-1) x min(-1))] exercised on a cycle ergometer in a protocol which began at an intensity of 150 W and was increased by 25 W every 2 min until the subject was exhausted. Blood samples were taken from the radial artery at the end of each exercise intensity to determine the partial pressures of blood gases and oxyhaemoglobin saturation (SaO2), with all values corrected for rectal temperature. The SaO2 was also monitored continuously by ear oximetry. A significant decrease in the partial pressure of oxygen in arterial blood (PaO2) was seen at the first exercise intensity (150 W, about 40% VO2peak). A further significant decrease in PaO2 occurred at 200 W, whereafter it remained stable but still significantly below the values at rest, with the lowest value being measured at 350 W [87.0 (SEM 1.9) mmHg]. The partial pressure of carbon dioxide in arterial blood (PaCO2) was unchanged up to an exercise intensity of 250 W whereafter it exhibited a significant downward trend to reach its lowest value at an exercise intensity of 375 W [34.5 (SEM 0.5) mmHg]. During both the first (150 W) and final exercise intensities (VO2peak) PaO2 was correlated significantly with both partial pressure of oxygen in alveolar gas (P(A)O2, r = 0.81 and r = 0.70, respectively) and alveolar-arterial difference in oxygen partial pressure (P(A-a)O2, r = 0.63 and r = 0.86, respectively) but not with PaCO2. At VO2peak PaO2 was significantly correlated with the ventilatory equivalents for both oxygen uptake and carbon dioxide output (r = 0.58 and r = 0.53, respectively). When both P(A)O2 and P(A-a)O2 were combined in a multiple linear regression model, at least 95% of the variance in PaO2 could be explained at both 150 W and VO2peak. A significant downward trend in SaO2 was seen with increasing exercise intensity with the lowest value at 375 W [94.6 (SEM 0.3)%]. Oximetry estimates of SaO2 were significantly higher than blood measurements at all times throughout exercise and no significant decrease from rest was seen until 350 W. The significant correlations between PaO2 and P(A)O2 with the first exercise intensity and at VO2peak led to the conclusion that inadequate hyperventilation is a major contributor to exercise-induced hypoxaemia.  相似文献   

14.
Epinephrine responses to insulin-induced hypoglycemia have indicated that athletes have a higher adrenal medullary secretory capacity than untrained subjects. This view was tested by an exercise protocol aiming at identical stimulation of the adrenal medulla in the two groups. Eight athletes (T) and eight controls (C) ran 7 min at 60% maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. Plasma epinephrine both at rest and at identical relative work loads [110% VO2max: 8.73 +/- 1.51 (T) vs. 3.60 +/- 1.09 mmol X l-1 (C)] was higher [P less than 0.05) in T than in C. Norepinephrine, as well as heart rate, increased identically in the two groups, indicating identical sympathetic nervous activity. Lactate and glycerol were higher in T than in C after running. Glucose production peaked immediately after exercise and was higher in T than in C. Glucose disappearance increased less than glucose production and was identical in T and C. Accordingly plasma glucose increased, more in T than in C (P less than 0.01). In T glucose levels approached the renal threshold greater than 20 min postexercise. Glucose clearance increased less in T than in C during exercise and decreased postexercise to or below (T, P less than 0.05) basal levels, despite increased insulin levels. Long-term endurance training increases responsiveness of the adrenal medulla to exercise, indicating increased secretory capacity. During maximal exercise this may contribute to higher glucose production, lower clearance, more inaccurate glucoregulation, and higher lypolysis in T compared with C.  相似文献   

15.
D C Harris 《Biochemistry》1977,16(3):560-564
Transferrin, the serum serum iron-transport protein which can bind two metal ions at physiologic pH, binds just one Fe3+, VO2+, or Cr3+ ion at pH 6.0. Fe3+ and VO2+ appear to be bound at the same site, designated A, based on electron paramagnetic resonance (EPR) spectra of VO2+-transferrin and (Fe3+)1(VO2+)1-transferrin. The EPR spectra of (Cr3+)1(VO2+)1-transferrin and of (Cr3+), (FE3+)1-transferrin indicate that that Cr3+ is bound to site B at pH 6.0. Transferrin was labeled at site A with 59Fe at pH 6.0 and at site B with 55Fe at pH 7.5. When the pH of the resulting preparation was lowered to 6.3 and the dissociated iron was separated by gel filtration, about ten times as much 55Fe as 59Fe was lost. The same EPR and isotopic-labeling experiments showed that Fe3+ added to transferrin at pH 7.5 binds to site A with about 90% selectivity.  相似文献   

16.
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.  相似文献   

17.
Elevated oxygen uptake (VO2) during moderate-intensity running following a bout of interval running training has been studied previously. To further investigate this phenomenon, the VO2 response to high-intensity exercise was examined following a bout of interval running. Well-trained endurance runners were split into an experimental group [maximum oxygen uptake, VO2max 4.73 (0.39)l x min(-1)] and a reliability group [VO2max 4.77 (0.26)l x min(-1)]. The experimental group completed a training session (4 x 800 m at 1 km x h(-1) below speed at VO2max, with 3 min rest between each 800-m interval). Five minutes prior to, and 1 h following the training session, subjects completed 6 min 30 s of constant speed, high-intensity running designed to elicit 40% delta (where delta is the difference between VO2 at ventilatory threshold and VO2max; tests 1 and 2, respectively). The slow component of VO2 kinetics was quantified as the difference between the VO2 at 6 min and the VO2 at 3 min of exercise, i.e. deltaVO2(6-3). The deltaVO2(-3) was the same in two identical conditions in the reliability group [mean (SD): 0.30 (0.10)l x min(-1) vs 0.32 (0.13)l x min(-1)]. In the experimental group, the magnitude of the slow component of VO2 kinetics was increased in test 2 compared with test 1 by 24.9% [0.27 (0.14)l x min(-1) vs 0.34 (0.08)l x min(-1), P < 0.05]. The increase in deltaVO2(6-3) in the experimental group was observed in the absence of any significant change in body mass, core temperature or blood lactate concentration, either at the start or end of tests 1 or 2. It is concluded that similar mechanisms may be responsible for the slow component of VO2 kinetics and for the fatigue following the training session. It has been suggested previously that this mechanism may be linked primarily to changes within the active limb, with the recruitment of alternative and/or additional less efficient fibres.  相似文献   

18.
Exogenous carbohydrate oxidation was assessed in 6 male Category 1 and 2 cyclists who consumed CytoMax (C) or a leading sports drink (G) before and during continuous exercise (CE). C contained lactate-polymer, fructose, glucose and glucose polymer, while G contained fructose and glucose. Peak power output and VO2 on a cycle ergometer were 408+/-13 W and 67.4+/-3.2 mlO2 x kg(-1) x min(-1). Subjects performed 3 bouts of CE with C, and 2 with G at 62% VO2peak for 90 min, followed by high intensity (HI) exercise (86% VO(2)peak) to volitional fatigue. Subjects consumed 250 ml fluid immediately before (-2 min) and every 15 min of cycling. Drinks at -2 and 45 min contained 100 mg of [U-(13)C]-lactate, -glucose or -fructose. Blood, pulmonary gas samples and 13CO2 excretion were taken prior to fluid ingestion and at 5,10,15,30,45,60,75, and 90 min of CE, at the end of HI, and 15 min of recovery. HI after CE was 25% longer with C than G (6.5+/-0.8 vs. 5.2+/-1.0 min, P<0.05). 13CO2 from the -2 min lactate tracer was significantly elevated above rest at 5 min of exercise, and peaked at 15 min. 13CO2 from the -2 min glucose tracer peaked at 45 min for C and G. 13CO2 increased rapidly from the 45 min lactate dose, and by 60 min of exercise was 33% greater than glucose in C or G, and 36% greater than fructose in G. 13CO2 production following tracer fructose ingestion was greater than glucose in the first 45 minutes in C and G. Cumulative recoveries of tracer during exercise were: 92%+/-5.3% for lactate in C and 25+/-4.0% for glucose in C or G. Recoveries for fructose in C and G were 75+/-5.9% and 26+/-6.6%, respectively. Lactate was used more rapidly and to a greater extent than fructose or glucose. CytoMax significantly enhanced HI.  相似文献   

19.
Oxygen demand increases during embryonic development, requiring an increase in red blood cells (RBCs) containing hemoglobin (Hb) to transport O(2) between the respiratory organ and systemic tissues. A thorough ontogenetic understanding of the onset and maturation of the complex regulatory processes for RBC concentration ([RBC]), Hb concentration ([Hb]), hematocrit (Hct), mean corpuscular indices (mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration ([MCHb])) is currently lacking. We hypothesize that during the last half of incubation when the respiratory organ (the chorioallantoic membrane) envelops most of the egg contents, mean corpuscular indices will stabilize. Accordingly, Hct, [RBC] and [Hb] must also all change proportionally across development. Further, we hypothesize that the hematological respiratory variables develop and mature as a function of incubation duration, independently of embryonic growth. As predicted, a similar increase in Hct (from 18.7±0.6% on day 10 (d10) to 34.1±0.5% on d19 of incubation), [RBC] (1.13±0.03×10(6)/μL to 2.50±0.03×10(6)/μL) and [Hb] (6.1±0.2 g% to 11.2±0.1 g%) occurred during d10-19. Both [RBC] and [Hb] demonstrated high linear correlation with Hct, resulting in constant [MCHb] (~33 g% from d10 to d19). The decrease in MCV (from ~165 μ(3) on d10 to ~140 μ(3) on d13) and MCH (~55 pg to ~45 pg) during d10-13, may be attributed to a changeover from larger primary to smaller secondary and adult-type erythrocytes with MCV and MCH remaining constant (~140 μ(3) and ~45 pg respectively) for the rest of the incubation period (d13-19). Hematological respiratory values on a given incubation day were identical between embryos of different masses using either natural mass variation or experimental growth acceleration, indicating that the hematological variables develop as a function of incubation time, irrespective of embryo growth.  相似文献   

20.
We investigated the effects of selective large changes in the acid-base environment of medullary chemoreceptors on the control of exercise hyperpnea in unanesthetized goats. Four intact and two carotid body-denervated goats underwent cisternal perfusion with mock cerebrospinal fluid (CSF) of markedly varying [HCO-3] (CSF [H+] = 21-95 neq/l; pH 7.68-7.02) until a new steady state of alveolar hypo- or hyperventilation was reached [arterial PCO2 (PaCO2) = 31-54 Torr]. Perfusion continued as the goats completed two levels of steady-state treadmill walking [2 to 4-fold increase in CO2 production (VCO2)]. With normal acid-base status in CSF, goats usually hyperventilated slightly from rest through exercise (-3 Torr PaCO2, rest to VCO2 = 1.1 l/min). Changing CSF perfusate [H+] changed the level of resting PaCO2 (+6 and -4 Torr), but with few exceptions, the regulation of PaCO2 during exercise (delta PaCO2/delta VCO2) remained similar regardless of the new ventilatory steady state imposed by changing CSF [H+]. Thus the gain (slope) of the ventilatory response to exercise (ratio of change in alveolar ventilation to change in VCO2) must have increased approximately 15% with decreased resting PaCO2 (acidic CSF) and decreased approximately 9% with increased resting PaCO2 (alkaline CSF). A similar effect of CSF [H+] on resting PaCO2 and on delta PaCO2/VCO2 during exercise also occurred in two carotid body-denervated goats. Our results show that alteration of the gain of the ventilatory response to exercise occurs on acute alterations in resting PaCO2 set point (via changing CSF [H+]) and that the primary stimuli to exercise hyperpnea can operate independently of central or peripheral chemoreception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号