首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

2.
People, species richness and human population growth   总被引:1,自引:0,他引:1  
Aim To investigate how the magnitude of conservation conflicts arising from positive relationships between human population size and species richness is altered during a period of marked human population growth (2% year?1). Location South Africa. Methods Anuran and avian species richness were calculated from atlas distribution maps, and human population was measured in 1996 and 2001, all at a quarter‐degree resolution. We investigated the relationships between human population size in, and its change during, these two periods and environmental energy availability. We then investigated the nature of relationships between species richness and human population size in both time periods, and its change during them; these analyses were conducted both with and without taking environmental energy availability into account. Finally, we investigated the nature of the relationships between human population size, and its change, and the proportion of protected land. Analyses were conducted both without and with taking spatial autocorrelation into account; the latter was achieved using mixed models that fitted a spatial covariance structure to the data. Results Change in human population size between 1996 and 2001 exhibited marked spatial variation, with both large increases and decreases, but was poorly correlated with environmental energy availability. The nature of the relationship between human population size and environmental energy availability did not, however, exhibit statistically significant differences regardless of whether the former was measured in 1996 or 2001. Similarly, relationships between species richness and human population size did not exhibit significant differences between the two periods. The strengths of the species–human relationships were markedly reduced when energy availability was taken into account. Change in human population size was poorly correlated with species richness. The proportion of protected land was negatively, albeit rather weakly, correlated with human population size in 1996 and 2001, and with its change between these two periods. Main conclusions Positive species–human relationships arise largely, but not entirely, because both species richness and human population size exhibit similar responses to environmental energy availability. During a period of rapid human population growth, and marked changes in the spatial variation in human population size, positive correlations remained between human population size and both anuran and avian species richness. The slope of these correlations did not, however, alter, and the most species‐rich areas are not those with the largest increases in human population. Despite marked population growth, the magnitude of conservation conflicts arising from positive species–human relationships thus appears to have remained largely unchanged.  相似文献   

3.
Aim Broad‐scale spatial variation in species richness relates to climate and physical heterogeneity but human activities may be changing these patterns. We test whether climate and heterogeneity predict butterfly species richness regionally and across Canada and whether these relationships change in areas of human activity. Location Canada. Methods We modelled the ranges of 102 butterfly species using genetic algorithms for rule‐set production (GARP). We then measured butterfly species richness and potentially important aspects of human activity and the natural environment. These were included in a series of statistical models to determine which factors are likely to affect butterfly species richness in Canada. We considered patterns across Canada, within predominantly natural areas, human‐dominated areas and particular ecozones. We examined independent observations of butterfly species currently listed under Canada's endangered species legislation to test whether these were consistent with findings from statistical models. Results Growing season temperature is the main determinant of butterfly species richness across Canada, with substantial contributions from habitat heterogeneity (measured using elevation). Only in the driest areas does precipitation emerge as a leading predictor of richness. The slope of relationships between all of these variables and butterfly species richness becomes shallower in human‐dominated areas, but butterfly richness is still highest there. Insecticide applications, habitat loss and road networks reduce butterfly richness in human‐dominated areas, but these effects are relatively small. All of Canada's at‐risk butterfly species are located in these human‐dominated areas. Main conclusions Temperature affects butterfly species richness to a greater extent than habitat heterogeneity at fine spatial scales and is generally far more important than precipitation, supporting both the species richness–energy and habitat heterogeneity hypotheses. Human activities, especially in southern Canada, appear to cause surprisingly consistent trends in biotic homogenization across this region, perhaps through range expansion of common species and loss of range‐restricted species.  相似文献   

4.
Aim  To assess whether spatial variation in sampling effort drives positive correlations between human population density and species richness.
Location  British 10 × 10 km squares.
Methods  We calculated three measures of species richness from atlas data of breeding birds in Britain: total species richness, species richness standardised for sampling effort, and the number of species only recorded in supplementary casual records in a manner not standardised for survey effort. We then assessed the form of the relationship between these richness estimates and human population density, both with and without taking spatial autocorrelation into account.
Results  Both total and standardised species richness exhibit similar species richness–human population density relationships; species richness generally increases with human population density, but decreases at the very highest densities. Supplementary species richness is very weakly correlated with human population density.
Main conclusions  In this example, sampling effort only slightly influences the form of species richness–human population density relationships. The positive correlation between species richness and human population density and any resultant conservation conflicts are thus not artefactual patterns generated by confounding human density and sampling effort.  相似文献   

5.
1. The spatial scale of analysis may influence the nature, strength and underlying drivers of macroecological patterns, one of the most frequently discussed of which is the relationship between species richness and environmental energy availability. 2. It has been suggested that species-energy relationships are hump-shaped at fine spatial grains and consistently positive at larger regional grains. The exact nature of this scale dependency is, however, the subject of much debate as relatively few studies have investigated species-energy relationships for the same assemblage across a range of spatial grains. Here, we contrast species-energy relationships for the British breeding avifauna at spatial grains of 1 km x 1 km, 2 km x 2 km and 10 km x 10 km plots, while maintaining a constant spatial extent. 3. Analyses were principally conducted using data on observed species richness. While survey work may fail to detect some species, observed species richness and that estimated using nonparametric techniques were strongly positively correlated with each other, and thus exhibit very similar spatial patterns. Moreover, the forms of species-energy relationships using observed and estimated species richness were statistically indistinguishable from each other. 4. Positive decelerating species-energy relationships arise at all three spatial grains. There is little evidence that the explanatory power of these relationships varies with spatial scale. However, ratios of regional (large-scale) to local (small-scale) species richness decrease with increasing energy availability, indicating that local richness responds to energy with a steeper gradient than does regional richness. Local assemblages thus sample a greater proportion of regional richness at higher energy levels, suggesting that spatial turnover of species richness is lower in high-energy regions. Similarly, a crude measure of temporal turnover, the ratio of cumulative species richness over a 4-year period to species richness in a single year, is lower in high-energy regions. These negative relationships between turnover and energy appear to be causal as both total and mean occupancy per species increases with energy. 5. While total density in 1 km x 1 km plots correlates positively with energy availability, such relationships are very weak for mean density per species. This suggests that the observed association between total abundance and species richness may not be mediated by population extinction rates, as predicted by the more individuals hypothesis. 6. The sampling mechanism suggests that species-energy relationships arise as high-energy areas support a greater number of individuals, and that random allocation of these individuals to local areas from a regional assemblage will generate species-energy relationships. While randomized local species-energy relationships are linear and positive, predicted richness is consistently greater than that observed. The mismatch between the observed and randomized species-energy relationships probably arises as a consequence of the aggregated nature of species distributions. The sampling mechanism, together with species spatial aggregation driven by limited habitat availability, may thus explain the species-energy relationship observed at this spatial scale.  相似文献   

6.
Aim: Recent coarse‐scale studies have shown positive relationships between the biodiversity of plants/vertebrates and the human population. Little is known about the generality of the pattern for invertebrates. Moreover, biodiversity and human population might correlate because they both covary with other factors such as energy availability and habitat heterogeneity. Here we test these two non‐mutually exclusive mechanisms with ant species‐richness data from the Fauna Europaea. Location Forty‐three European countries/regions. Methods We derived mixed models of total, native and exotic ant species richness as a function of human population size/density, controlling for country area, plant species richness (as a proxy for habitat heterogeneity), and mean annual temperature and precipitation (variables related to energy availability). Results Ant species richness increased significantly with increasing human population. This result was confirmed when controlling for variations in country area. Both for human population size/density and for ant species richness, there were positive correlations with temperature but not with precipitation. This finding is in agreement with the energy‐availability hypothesis. However, we observed a negative latitudinal gradient in ant and plant species richness, although not in human population size/density. Plant species richness was positively correlated with ant species richness but not with human population size/density. Thus, there is evidence that this type of habitat heterogeneity can play a role in the observed latitudinal gradient of ant species richness, but not in the positive correlation between ant species richness and human population. The results were confirmed for the 545 native and the 32 exotic ant species reported, and we observed a good correlation between exotic and native ant species richness. Main conclusions Ant species richness in European countries conforms to six macroecological patterns: (1) a negative latitudinal gradient; and a positive (2) species–energy relationship, (3) species–area relationship, (4) correlation with plant species richness, (5) exotic–native species richness correlation, and (6) species–people correlation. There is some evidence for the energy‐availability hypothesis, but little evidence for habitat heterogeneity as an explanation of the large‐scale human population–ant biodiversity correlation. This correlation has implications for the conservation of ant diversity in Europe.  相似文献   

7.
Aim Ongoing biological invasions will enhance the impacts of humans on biodiversity. Nonetheless, the effects of exotic species on diversity are idiosyncratic. Increases in diversity might be a consequence of similar responses by species to available energy, or because of positive relationships between human density, energy and propagule pressure. Here we use data from the Southern Ocean island plants and insects to investigate these issues. Location The Southern Ocean Islands ranging from Tristan da Cunha to Heard Island and South Georgia. Methods Generalized linear models are used to explore the relationships between indigenous and exotic species richness for plants and insects on two different islands. Similar models are used to examine interactions between indigenous and exotic species richness, energy availability and propagule pressure at the regional scale. Results Positive relationships were found between indigenous and exotic species richness at local scales, although for plants, the relationship was partially triangular. Across the Southern Ocean Islands, there was strong positive covariation between indigenous and exotic plant species richness and insect species richness, even taking spatial autocorrelation into account. Both exotic and indigenous plant and insect species richness covaried with energy availability, as did human visitor frequency. When two islands with almost identical numbers of human visits were contrasted, it was clear that energy availability, or perhaps differences in climate‐matching, were responsible for differences in the extent of invasion. Conclusion In plants and insects, there are positive relationships between indigenous and exotic diversity at local and regional scales across the Southern Ocean islands. These relationships are apparently a consequence of similar responses by both groups and by human occupants to available energy. When visitor frequency is held constant, energy availability is the major correlate of exotic species richness, though the exact mechanistic cause of this relationship requires clarification.  相似文献   

8.
Aim To determine how species richness, abundance, biomass, energy use and mean number of individuals per species scale with environmental energy availability in wintering and breeding avian assemblages, and to contrast assemblages of (i) common and rare species and (ii) breeding residents and migrants. To assess whether such patterns are compatible with the ‘more individuals hypothesis’ (MIH) that high‐energy areas are species‐rich because they support larger populations that are buffered against extinction. Location The North American continent (latitudinal range 23.4 °?48.1 °N; longitudinal range 124.2°?68.7° W). Methods Avian species richness, abundance, biomass and energy use were calculated for 295 Resident Bird Count plots. Environmental energy availability was measured using ambient temperature and the Normalized Difference Vegetation Index (NDVI), a close correlate of plant productivity. Analyses took plot area into account, and were conducted (with and without taking habitat type into account) using general linear models and spatial mixed models. Results Positive species–energy relationships were exhibited by both wintering and breeding assemblages, but were stronger in the former. The structure of winter assemblages responded more strongly to temperature than NDVI, while breeding assemblages tended to respond more strongly to NDVI. Breeding residents responded to annual measures of energy availability while breeding migrants and the winter assemblage responded more strongly to seasonal measures. In the winter assemblage, rare and common species exhibited species–energy relationships of a similar strength, but common breeding species exhibited a much stronger relationship than rare breeding species. In both breeding and wintering assemblages, abundance, biomass and energy use increased with energy availability and species richness. Energy availability was a poor predictor of the mean number of individuals per species. Main conclusions The nature of the species–energy relationship varies seasonally and with the manner in which energy availability is measured. Our data suggest that residents are less able to respond to seasonal fluxes in resource availability than long‐distance migrants. Increasing species richness and energy availability is associated with increasing numbers of individuals, biomass and energy use. While these observations are compatible with the MIH our data provide only equivocal support for this hypothesis, as the rarest species do not exhibit the strongest species–energy relationships.  相似文献   

9.
Aim In this study, I determine the relationships between net primary productivity (NPP), human population density, species richness and land use. I also examine the implications of human settlement patterns for species conservation. Location Australia. Methods I document the associations between NPP, human population density and the species richness of birds, butterflies and mammals using correlations and spatial regressions. I also assess changes in land‐use with NPP and population density, focussing particularly on protected areas. An initial exploration into the implications of the NPP‐population density relationship for regional conservation strategies is provided. Results Human population density increases with NPP suggesting that available energy may be a key driving force of human settlement patterns. The species richness of each taxonomic group and geographically restricted species also increases with NPP leading to substantial overlap between species diversity and populated regions. The percentage of land designated as minimal use decreases considerably with increasing human population density and NPP, while intensive agriculture is confined entirely to areas of high NPP. There are strong negative relationships between the size of Australia's National Parks and human population density and NPP. Small parks are often surrounded by relatively dense settlements, but have high average NPP, while large parks are mostly isolated and characterized by low productivity. There are no areas in the highest quartile of NPP that also occur in the most sparsely populated regions, presenting challenges for conservation strategies wanting to protect productive areas under the least threat of human development. Main conclusions Human population density and species richness respond similarly to variation in NPP, leading to spatial congruence between human settlements and productive, species rich regions. Planning strategies are required that minimize the potential threat posed by human development to diverse ecosystems and maximize the underlying productivity of protected areas. Reducing the level of threat may require stabilizing the size of the human population, while capturing larger areas of relatively high productivity in the conservation reserve system would lead to greater protection of local diversity.  相似文献   

10.
Aim Climate‐based models often explain most of the variation in species richness along broad‐scale geographical gradients. We aim to: (1) test predictions of woody plant species richness on a regional spatial extent deduced from macro‐scale models based on water–energy dynamics; (2) test if the length of the climate gradients will determine whether the relationship with woody species richness is monotonic or unimodal; and (3) evaluate the explanatory power of a previously proposed ‘water–energy’ model and regional models at two grain sizes. Location The Iberian Peninsula. Methods We estimated woody plant species richness on grid maps with c. 2500 and 22,500 km2 cell size, using geocoded data for the individual species. Generalized additive models were used to explore the relationships between richness and climatic, topographical and substrate variables. Ordinary least squares regression was used to compare regional and more general water–energy models in relation to grain size. Variation partitioning by partial regression was applied to find how much of the variation in richness was related to spatial variables, explanatory variables and the overlap between these two. Results Water–energy dynamics generate important underlying gradients that determine the woody species richness even over a short spatial extent. The relationships between richness and the energy variables were linear to curvilinear, whereas those with precipitation were nonlinear and non‐monotonic. Only a small fraction of the spatially structured variation in woody species richness cannot be accounted for by the fitted variables related to climate, substrate and topography. The regional models accounted for higher variation in species richness than the water–energy models, although the water–energy model including topography performed well at the larger grain size. Elevation range was the most important predictor at all scales, probably because it corrects for ‘climatic error’ due to the unrealistic assumption that mean climate values are evenly distributed in the large grid cells. Minimum monthly potential evapotranspiration was the best climatic predictor at the larger grain size, but actual evapotranspiration was best at the smaller grain size. Energy variables were more important than precipitation individually. Precipitation was not a significant variable at the larger grain size when examined on its own, but was highly significant when an interaction term between itself and substrate was included in the model. Main conclusions The significance of range in elevation is probably because it corresponds to several aspects that may influence species diversity, such as climatic variability within grid cells, enhanced surface area, and location for refugia. The relative explanatory power of energy and water variables was high, and was influenced by the length of the climate gradient, substrate and grain size of the analysis. Energy appeared to have more influence than precipitation, but water availability is also determined by energy, substrate and topographic relief.  相似文献   

11.
To improve understanding of the biogeographical consequences of species introduction, we examined whether introduced soil macroinvertebrates differ from natives in the relationship between species richness and key environmental predictors, and whether such differences affect the relationship between native and introduced species richness. For North America north of Mexico, we summarized jurisdiction occurrence data for seven macroinvertebrate taxa with strong influences on soil biodiversity or processes. We analysed the relationships of native and introduced species richness to each other using linear regression; to latitude using Gaussian regressions; and, using the residuals of the richness–latitude regressions, to distance from coasts, human population density, and human population size using regression and correlation. We found weak to strong positive relationships between native and introduced species richness. This variation was related to divergent relationships of native and introduced species with latitude, human population density, and distance from coasts. Native species richness declined with increasing latitude for all taxa, as did introduced species richness for taxa with predominantly lower‐latitude origins (ants, termites, non‐lumbricid earthworms). In contrast, introduced species richness peaked at higher latitudes for four taxa of predominantly Palearctic origins (weevils, ground beetles, lumbricid earthworms, isopods). Partitioning introduced taxa within these groups based on region of origin, we found that Palearctic taxa were distributed at higher latitudes than non‐Palearctic taxa. Thus source region appears to strongly influence introduced species richness–latitude relationships. Compared to natives, introduced species exhibited more positive relationships with human population density and negative relationships with distance from coasts, but did not differ in relationships with human population size. Thus coastal, densely populated regions are likely to have a higher proportion of introduced soil macroinvertebrate species. These differences between distribution of native and introduced species tend to weaken positive correlations between native and introduced species richness, especially for taxa dominated by Palearctic introductions.  相似文献   

12.
To explore the impacts of increasing human numbers on nature, many studies have examined relationships between human population density (HPD) and biodiversity change. The implicit assumption in many of these studies is that as population density increases so does the threat to biodiversity. The implications of this assumption are compounded by recent research showing that species richness for many taxonomic groups is often highest in areas with high HPD. If increasing HPD is a threat to conservation, this threat may be magnified owing to the spatial congruence between people and species richness. Here, I review the relationships between HPD and measures of biodiversity status focussing in particular on evidence for the spatial congruence between people and species richness and the threat that increasing HPD may pose to biodiversity conservation. The review is split into two major sections: (i) a quantitative assessment of 85 studies covering 401 analyses, including meta-analyses on discrete relationships; and (ii) a discussion of the implications of the quantitative analyses and major issues raised in the literature. Our understanding of the relationships between HPD and biodiversity is skewed by geographic and taxonomic biases in the literature. Most research has been conducted in the Northern Hemisphere and focussed primarily on birds and mammals, largely ignoring relationships with other taxonomic groups. A total of 127 analyses compared HPD with the species richness of particular taxonomic groups. A meta-analysis of these results found a significant positive population correlation indicating that, on average, species-rich regions and human settlements co-occur. However, there was substantial unexplained heterogeneity in these data. Some of this heterogeneity was explained by the size of the sampling unit used by researchers - as this increased so did the strength of the correlation between HPD and species richness. The most convincing result for a taxonomic group was a significant positive population correlation between HPD and bird species richness. Significant positive population correlations were also found for HPD versus the richness of threatened and geographically restricted species. Hence, there is reasonably good evidence for spatial congruence between people and species-rich regions. The reasons for this congruence are only just beginning to be explored, but key mutual drivers appear to include available energy and elevation. The evidence for increasing HPD as a threat to conservation was weak, owing primarily to the extreme heterogeneity in the approaches used to address this issue. There was some suggestion of a positive relationship between HPD and species extinction, but this result should be interpreted with caution owing to the wide diversity of approaches used to measure extinction. Identifying strong links between human development and species extinction is hampered in part by the difficulty of recording extinction events. The most convincing indication of the negative impact of increasing HPD was a significant negative population correlation between density and the size of protected areas. The magnitude and implications of spatial congruence between people and biodiversity are now being explored using the principles of complementarity and irreplaceability. Human development as a threat to conservation is usually assessed within a complex, interdisciplinary modelling framework, although population size is still considered a key factor. Future population growth and expansion of human settlements will present increasing challenges for conserving species-rich regions and maximising the benefits humans gain from nature.  相似文献   

13.
Aim To determine the relationship between the distribution of climate, climatic heterogeneity and pteridophyte species richness gradients in Australia, using an approach that does not assume potential relationships are spatially invariant and allows for scale effects (extent of analysis) to be explicitly examined. Location Australia, extending from 10° S to 43° S and 112° E to 153° E. Method Species richness within 50 × 50 km grid cells was determined using point distribution data. Climatic surfaces representing the distribution and availability of water and energy at 1 km and 5 km cell resolutions were obtained. Climate at the 50 km resolution of analysis was represented by their mean and standard deviation in that area. Relationships were assessed using geographically weighted linear regression at a range of spatial bandwidths to investigate scale effects. Results The parameters and the predictive strength of all models varied across space at all extents of analysis. Overall, climatic variables representing water availability were more highly correlated to pteridophyte richness gradients in Australia than those representing energy. Their variance in cells further increased the strength of the relationships in topographically heterogeneous regions. Relationships with water were strong across all extents of analysis, particularly in the tropical and subtropical parts of the continent. Water availability explained less of the variation in richness at higher latitudes. Main conclusions This study brings into question the ability of aspatial and single‐extent models, searching for a unified explanation of macro‐scaled patterns in gradients of diversity, to adequately represent reality. It showed that, across Australia, there is a positive relationship between pteridophyte species richness and water availability but the strength and nature of the relationship varies spatially with scale in a highly complex manner. The spatial variance, or actual complexity, in these relationships could not have been demonstrated had a traditional aspatial global regression approach been used. Regional scale variation in relationships may be at least as important as more general relationships for a true understanding of the distribution of broad‐scale diversity.  相似文献   

14.
Aim An area’s ability to support species may be dependent not only on the total amount of available energy it contains but also on energy density (i.e. available energy per unit area). Acknowledging these two aspects of energy availability may increase mechanistic understanding of how increased energy availability results in increased species richness. We studied the relationship between energy density, its variation in space and boreal forest bird species richness and investigated two possible mechanisms: (1) metabolic constraints of organisms, and (2) increased resource availability for specialists. Location Protected areas in Finland’s boreal forest. Methods We tested whether bird species richness was best determined by total energy availability in an area or by energy density and its variation within the area, before and after including bird abundance in the models. We evaluated two main explanatory variables: tree growth reflecting the rate of energy production and tree volume as a measure of biomass. In addition, we modelled individual species’ responses to energy density and its variation, and evaluated the prediction of the metabolic constraints hypothesis that small species are limited by energy density whereas large species are limited by total energy availability in the area. Results Energy density and its variation were good predictors of species richness: together with abundance they explained 84% of variation in species richness (compared with 74% for abundance alone). Pure metabolic constraints were unlikely to explain this relationship. Instead, the mechanism probably involved increased habitat heterogeneity benefiting specialist species. Total energy availability was also an important factor determining species richness but its effect was indirect via abundance. Main conclusions Our results corroborate the importance of energy availability as a driver of species richness in forest bird communities, and they indicate that energy density and its variation in the landscape strongly influence species richness even after accounting for abundance.  相似文献   

15.
Aim To investigate explanations for the maintenance of a positive spatial species richness–human population density correlation at broad scales, despite the negative impact of humans on species richness. These are (hypotheses 1–4): (1) human activities that create a habitat mosaic and (2) a more favourable climate, and (3) adequate conservation measures (e.g. sufficient natural habitat), maintain the positive species richness–human density correlation; or (4) the full range of human densities decrease the slope of the correlation without changing its form. Location South Africa. Methods Avian species richness data from atlas distribution maps and human population density data derived from 2001 census results were converted to a quarter‐degree resolution. We investigated the number of land transformation types (anthropogenic habitat heterogeneity), irrigated area (increasing productivity), and other covarying factors (e.g. primary productivity) as predictors of species richness. We compared species richness–human density relationships among regions with different amounts of natural habitat, and investigated whether the full range of human densities decrease species richness in relation to primary productivity. Results Hypotheses 1, 2 and 3 were supported. Human densities and activities that increase habitat heterogeneity and productivity are important beneficial factors to common species, but not to rare species. The species richness–human density relationship persists only at low land transformation levels, and no significant relationship exists at higher levels. For common species, the relationship becomes non‐significant at lower land transformation levels than for rare species. Main conclusions The persistence of the species richness–human density relationship depends mostly on the amount of remaining natural habitat. In addition, certain human activities benefit especially common species. Common species seem to be more flexible than rare species in response to human activity and habitat loss.  相似文献   

16.
Resources and global avian assemblage structure in forests   总被引:2,自引:0,他引:2  
Explaining spatial variation in a number of bird species, particularly from temperate to tropical regions, has been a longstanding challenge. We test at a global scale whether species‐rich forest assemblages are associated with division of a larger resource pool, a finer division of that pool, or some combination of the two. Species richness increases with increasing assemblage abundance, biomass and energy use. As assemblage abundance, biomass and energy use increase with increasing energy availability, and as per species numbers of individuals, biomass and energy use do not decrease with increasing energy availability, we provide direct evidence that the avian species–energy relationship in forests is associated foremost with an increase in the size of the resource pool and not with a finer level of its subdivision.  相似文献   

17.
Macrofungal taxa and human population in Italy’s regions   总被引:1,自引:0,他引:1  
Fungi are relatively understudied, particularly in terms of biogeographical patterns. We analyse whether there is a spatial correlation between macrofungi (Basidiomycota) and human population (both in terms of size and rate of change) in Italy’s regions. Although current fungal taxonomic richness increases with increasing number of inhabitants (censused in 1986 and 2006 and predicted for 2026) and with their density, these relationships are not significant when controlling for variations in area amongst regions. This result, along with other recent independent studies, suggests that the large-scale spatial correlation of people and species can be often explained by both variables correlating with a third factor such as area, habitat heterogeneity or energy availability. Macrofungal richness significantly increases with percentage of forest cover, but not with percentage of protected area, suggesting that the conservation of Italian fungi needs to be addressed also outside the current network of national and regional nature reserves. The absence of any significant association of the estimate of macrofungal taxa with human population change observed in the last and predicted for the next two decades implies that there is no current clear trend towards a change of the ratio between macrofungal taxa and human presence at this scale of analysis. Further work at a higher resolution is needed to assess the consequences for Italy’s fungal biodiversity of the abandonment of marginal land and the expansion of urbanized areas in regions of high environmental productivity.  相似文献   

18.
Energetic constraints are fundamental to ecology and evolution, and empirical relationships between species richness and estimates of available energy (i.e. resources) have led some to suggest that richness is energetically constrained. However, the mechanism linking energy with richness is rarely specified and predictions of secondary patterns consistent with energy‐constrained richness are lacking. Here, we lay out the necessary and sufficient assumptions of a causal relationship linking energy gradients to richness gradients. We then describe an eco‐evolutionary simulation model that combines spatially explicit diversification with trait evolution, resource availability and assemblage‐level carrying capacities. Our model identified patterns in richness and phylogenetic structure expected when a spatial gradient in energy availability determines the number of individuals supported in a given area. A comparison to patterns under alternative scenarios, in which fundamental assumptions behind energetic explanations were violated, revealed patterns that are useful for evaluating the importance of energetic constraints in empirical systems. We use a data set on rockfish (genus Sebastes) from the northeastern Pacific to show how empirical data can be coupled with model predictions to evaluate the role of energetic constraints in generating observed richness gradients.  相似文献   

19.
Aim To evaluate the relative importance of water–energy, land‐cover, environmental heterogeneity and spatial variables on the regional distribution of Red‐Listed and common vascular plant species richness. Location Trento Province (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided regularly into 228 3′ × 5′ quadrants. Methods Data from a floristic inventory were separated into two subsets, representing Red‐Listed and common (i.e. all except Red‐Listed) plant species richness. Both subsets were separately related to water–energy, land‐cover and environmental heterogeneity variables. We simultaneously applied ordinary least squares regression with variation partitioning and hierarchical partitioning, attempting to identify the most important factors controlling species richness. We combined the analysis of environmental variables with a trend surface analysis and a spatial autocorrelation analysis. Results At the regional scale, plant species richness of both Red‐Listed and common species was primarily related to energy availability and land cover, whereas environmental heterogeneity had a lesser effect. The greatest number of species of both subsets was found in quadrants with the largest energy availability and the greatest degree of urbanization. These findings suggest that the elevation range within our study region imposes an energy‐driven control on the distribution of species richness, which resembles that of the broader latitude gradient. Overall, the two species subsets had similar trends concerning the relative importance of water–energy, land cover and environmental heterogeneity, showing a few differences regarding the selection of some predictors of secondary importance. The incorporation of spatial variables did not improve the explanatory power of the environmental models and the high original spatial autocorrelation in the response variables was reduced drastically by including the selected environmental variables. Main conclusions Water–energy and land cover showed significant pure effects in explaining plant species richness, indicating that climate and land cover should both be included as explanatory variables in modelling species richness in human‐affected landscapes. However, the high degree of shared variation between the two groups made the relative effects difficult to separate. The relatively low range of variation in the environmental heterogeneity variables within our sampling domain might have caused the low importance of this complex factor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号