首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recombinant Epstein-Barr virus (EBV) was constructed, with a positive-selection marker inserted at the site of a deletion of a DNA segment which encodes the first five transmembrane domains of LMP2A and LMP2B. Despite the mutation, the mutant recombinant EBV was able to initiate and maintain primary B-lymphocyte growth transformation in vitro. Cells transformed with the mutant recombinant were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, or serum requirement. Expression of EBNA1, EBNA2, EBNA3A, EBNA3C, and LMP1 and permissivity for lytic EBV infection were also unaffected by the LMP2 deletion mutation. These results complete the molecular genetic studies proving LMP2 is dispensable for primary B-lymphocyte growth transformation, latent infection, and lytic virus replication in vitro.  相似文献   

2.
Injection of Epstein-Barr virus (EBV)-transformed human lymphoblastoid B cells into immunodeficient SCID mice results in the appearance of rapidly growing, fatal human B-cell tumors. To evaluate the role of EBV nuclear protein 2 (EBNA-2) in this process, we generated lymphoblastoid cell lines transformed by several EBV mutants which were identical except for deletions in the EBNA-2 gene (J. I. Cohen, F. Wang, and E. Kieff, J. Virol. 65:2545-2554, 1991). These cell lines were injected intraperitoneally into SCID mice, and the interval until tumor detection was determined. Cell lines transformed with EBV type 1 (strain W91) or with EBV type 2 (strain P3HR-1) with an inserted type 1 EBNA-2 gene grew at the same rapid rate, indicating the potential importance of EBNA-2 for tumor formation in vivo. Cell lines derived from three different EBV mutants with deletions in the amino half of EBNA-2 produced tumors more slowly than cell lines transformed by wild-type W91 virus. In contrast, a cell line transformed with an EBV mutant with a deletion in the carboxy terminus of EBNA-2 grew more rapidly than cell lines transformed by wild-type virus. EBV mutants with deletions in the amino half of EBNA-2 had had reduced transforming activity in vitro, while the carboxy-terminal EBNA-2 mutant had had transforming activity greater than or equal to that of the wild type. These data indicate that EBNA-2 plays a critical role both for B-cell tumor growth in SCID mice and for B-lymphocyte transformation in vitro.  相似文献   

3.
The Epstein-Barr virus (EBV) BARF1 gene encodes a soluble colony-stimulating factor 1 (CSF-1) receptor that neutralizes the effects of CSF-1 in vitro. To study the effect of BARF1 on EBV-induced transformation, we added recombinant BARF1 to B cells in the presence of EBV. BARF1 did not enhance transformation of B cells by EBV in vitro. To study the role of BARF1 in the context of EBV infection, we constructed a recombinant EBV mutant with a large deletion followed by stop codons in the BARF1 gene as well as a recombinant virus with a wild-type BARF1 gene. While BARF1 has previously been shown to act as an oncogene in several cell lines, the EBV BARF1 deletion mutant transformed B cells and initiated latent infection, and the B cells transformed with the BARF1 mutant virus induced tumors in SCID mice with an efficiency similar to that of the wild-type recombinant virus. Since human CSF-1 stimulates secretion of alpha interferon from mononuclear cells and BARF1 encodes a soluble CSF-1 receptor, we examined whether recombinant BARF1 or BARF1 derived from EBV-infected B cells could inhibit alpha interferon secretion. Recombinant BARF1 inhibited alpha interferon secretion by mononuclear cells in a dose-dependent fashion. The B cells transformed with mutant BARF1 EBV showed reduced inhibition of alpha interferon secretion by human mononuclear cells when compared with the B cells transformed with wild-type recombinant virus. These experiments indicate that BARF1 expressed from the EBV genome directly inhibits alpha interferon secretion, which may modulate the innate host response to the virus.  相似文献   

4.
Circular Epstein-Barr virus (EBV) DNA molecules have been purified and characterized from a human lymphoid cell line derived from a case of heterophile antibody-positive, blood transfusion-induced infectious mononucleosis, 883L. The circular EBV DNA in three cell lines obtained by transformation of human umbilical cord blood leukocytes with a strain of EBV originally derived from 883L was also studied. As estimated from sedimentation velocity data and electron microscopy, the circular EBV DNA molecules are 10 to 15% smaller than either the circular EBV DNA previously found intracellularly in several other types of EBV-transformed cells or the linear EBV DNA present extracellularly in virus particles. In addition, the EBV-transformed cord blood cell lines studied here differed from other EBV-transformed cells in that integrated virus DNA sequences could not be detected.  相似文献   

5.
Transformation-competent, replication-defective Epstein-Barr virus (EBV) recombinants which are deleted for 18 kbp of DNA encoding the largest EBNA intron and for 58 kbp of DNA between the EBNA1 and LMP1 genes were constructed. These recombinants were made by transfecting three overlapping cosmid-cloned EBV DNA fragments into cells infected with a lytic replication-competent but transformation-defective EBV (P3HR-1 strain) and were identified by clonal transformation of primary B lymphocytes into lymphoblastoid cell lines. One-third of the lymphoblastoid cell lines were infected with recombinants which had both deletions and carried the EBNA2 and EBNA3 genes from the transfected EBV DNA and therefore are composed mostly or entirely from the transfected EBV DNA fragments. The deleted DNA is absent from cells infected with most of these recombinants, as demonstrated by Southern blot and sensitive PCR analyses for eight different sites within the deleted regions. Cell growth and EBNA, LMP, and BZLF1 gene expression in lymphoblastoid cell lines infected with these recombinants are similar to those in cells infected with wild-type EBV recombinants. Together with previous data, these experiments reduce the complexity of the EBV DNA necessary for transformation of primary B lymphocytes to 64 kbp. The approach should be useful for molecular genetic analyses of transforming EBV genes or for the insertion of heterologous fragments into transforming EBV genomes.  相似文献   

6.
7.
Using second-site homologous recombination, Epstein-Barr virus (EBV) recombinants were constructed which carry an LMP2A mutation terminating translation at codon 19. Despite the absence of LMP2A or LMP2A cross-reactive protein, the recombinants were able to initiate and maintain primary B-lymphocyte growth transformation in vitro. EBNA1, EBNA2, and LMP1 expression was unaffected by the LMP2A mutation. The LMP2A mutant recombinant EBV-infected lymphoblastoid cell lines (LCLs) were identical to wild-type recombinant EBV-infected control LCLs with respect to initial outgrowth, subsequent growth, sensitivity to limiting cell dilution, sensitivity to low serum, and growth in soft agarose. The permissivity of LCLs for lytic EBV infection and virus replication was also unaffected by the LMP2A mutation.  相似文献   

8.
Recombinant Epstein-Barr viruses (EBV) with a translation termination codon mutation inserted into the nuclear protein 3A (EBNA-3A) or 3C (EBNA-3C) open reading frame were generated by second-site homologous recombination. These mutant viruses were used to infect primary B lymphocytes to assess the requirement of EBNA-3A or -3C for growth transformation. The frequency of obtaining transformants infected with a wild-type EBNA-3A recombinant EBV was 10 to 15%. In contrast, the frequency of obtaining transformants infected with a mutant EBNA-3A recombinant EBV was only 1.4% (9 mutants in 627 transformants analyzed). Transformants infected with mutant EBNA-3A recombinant virus could be obtained only by coinfection with another transformation-defective EBV which provided wild-type EBNA-3A in trans. Cells infected with mutant EBNA-3A recombinant virus lost the EBNA-3A mutation with expansion of the culture. The decreased frequency of recovery of the EBNA-3A mutation, the requirement for transformation-defective EBV coinfection, and the inability to maintain the EBNA-3A mutation indicate that EBNA-3A is essential or critical for lymphocyte growth transformation and that the EBNA-3A mutation has a partial dominant negative effect. Five transformants infected with mutant EBNA-3C recombinant virus EBV were also identified and expanded. All five also required wild-type EBNA-3C in trans. Serial passage of the mutant recombinant virus into primary B lymphocytes resulted in transformants only when wild-type EBNA-3C was provided in trans by coinfection with a transformation-defective EBV carrying a wild-type EBNA-3C gene. A secondary recombinant virus in which the mutated EBNA-3C gene was replaced by wild-type EBNA-3C was able to transform B lymphocytes. Thus, EBNA-3C is also essential or critical for primary B-lymphocyte growth transformation.  相似文献   

9.
Objectives:  Epstein-Barr virus (EBV) transformation has been described as a routine method to establish human B lymphoblastoid cell lines. Each established lymphoblastoid cell line represents one unique genetic information carrier and can produce unlimited quantities of DNA materials available for downstream applications and research. Undoubtedly, it is of great value to human clinical and experimental genetic studies. However, the current process of EBV transformation requires much manpower in the routine renewal of medium, which is time-consuming. This situation can become a serious problem especially when establishing a human B lymphoblastoid cell bank. A modified and cost-effective protocol for EBV transformation should be considered.
Materials and methods:  In the present study, process in EBV transformation was modified to fit the requirements of robot handling.
Results:  1 mL of whole blood was demonstrated to be sufficient to perform EBV transformation. Additionally, EBV transformation can performed in 96-deep-well plates that are directly and widely used with automatic work platforms.
Conclusions:  Based on these facts, a process of EBV transformation can be modified to fit the requirements of robot handling.  相似文献   

10.
Localization of Epstein-Barr virus (EBV) DNA was studied by in situ hybridization on chromosomes from the Namalwa Burkitt lymphoma cell line and from a lymphoblastoid cell line transformed in vitro (ATL9/g). The five chromosome bands 1p32, 1q31, 5q21, 13q21, and 16p13 showed the presence of EBV DNA in both of the lines. Grain deposition at the site on chromosome 1q of the Burkitt line was particularly intense. It was also found that EBV DNA in the lymphoblastoid cell line co-localized with a stable achromatic gap at 1p32 whose presence seems to confer a proliferative advantage on the cells.  相似文献   

11.
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), which is critical for EBV-induced B-cell transformation, is also abundantly expressed during the lytic cycle of viral replication. However, the biological significance of this strong LMP1 induction remains unknown. We engineered a bacterial artificial chromosome clone containing the entire genome of Akata strain EBV to specifically disrupt the LMP1 gene. Akata cell clones harboring the episomes of LMP1-deleted EBV were established, and the effect of LMP1 loss on virus production was investigated. We found that the degree of viral DNA amplification and the expression levels of viral late gene products were unaffected by LMP1 loss, demonstrating that the LMP1-deleted EBV entered the lytic replication cycle as efficiently as the wild-type counterpart. This was confirmed by our electron microscopic observation that nucleocapsid formation inside nuclei occurred even in the absence of LMP1. By contrast, loss of LMP1 severely impaired virus release into culture supernatants, resulting in poor infection efficiency. The expression of truncated LMP1 in Akata cells harboring LMP1-deleted EBV rescued the virus release into the culture supernatant and the infectivity, and full-length LMP1 partially rescued the infectivity. These results indicate that inducible expression of LMP1 during the viral lytic cycle plays a critical role in virus production.  相似文献   

12.
Relationships between the rate of DNA synthesis in cultured human umbilical cord leukocytes and the multiplicity of added Epstein-Barr virus (EBV) were studied. At low multiplicities of approximately 0.1 transforming units/cell (approximately 10 physical particles/cell), inoculated cultures demonstrated increased rates of DNA synthesis, by comparison to uninoculated cultures, 3 days after inoculation. Stimulation of DNA synthesis was evident of progressively longer intervals after inoculations of 10-fold dilutions of virus. The rate of DNA synthesis, determined by short [-3H]thymidine pulses, reflected as small as twofold changes in multiplicity and thus can serve as a quantitative assay for the virus. Changes in the rate of DNA synthesis were evident before increases in cell number or alteration in morphology. Stimulation of DNA synthesis in umbilical cord leukocytes was inhibited by treatment of EBV with antibody and also in graded fashion, by progressive doses of UV irradiation to the virus. Induction of DNA synthesis by EBV was serum dependent. Estimates of the number of cells transformed were obtained by extrapolation from a standard curve relating known numbers of transformed cells to [-3H]thymidine incorporation and also by cloning cells after exposure to virus. At the low multiplicities of infection used in these experiments approximately 0.04 to 0.002 of the total cellular population was transformed. The high efficiency of cell transformation by EBV by comparison to other DNA tumor viruses is emphasized.  相似文献   

13.
DNA viruses such as herpesviruses are known to encode homologs of cellular antiapoptotic viral Bcl-2 proteins (vBcl-2s), which protect the virus from apoptosis in its host cell during virus synthesis. Epstein-Barr virus (EBV), a human tumor virus and a prominent member of γ-herpesviruses, infects primary resting B lymphocytes to establish a latent infection and yield proliferating, growth-transformed B cells in vitro. In these cells, 11 viral genes that contribute to cellular transformation are consistently expressed. EBV also encodes two vBcl-2 genes whose roles are unclear. Here we show that the genetic inactivation of both vBcl-2 genes disabled EBV's ability to transform primary resting B lymphocytes. Primary B cells infected with a vBcl-2-negative virus did not enter the cell cycle and died of immediate apoptosis. Apoptosis was abrogated in infected cells in which vBcl-2 genes were maximally expressed within the first 24 h postinfection. During latent infection, however, the expression of vBcl-2 genes became undetectable. Thus, both vBcl-2 homologs are essential for initial cellular transformation but become dispensable once a latent infection is established. Because long-lived, latently infected memory B cells and EBV-associated B-cell lymphomas are derived from EBV-infected proapoptotic germinal center B cells, we conclude that vBcl-2 genes are essential for the initial evasion of apoptosis in cells in vivo in which the virus establishes a latent infection or causes cellular transformation or both.  相似文献   

14.
It was demonstrated that Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) were nonessential for B-lymphocyte growth transformation. We revisited this issue by producing a large quantity of EBER-deleted EBV by using an Akata cell system. Although the EBER-deleted virus efficiently infected B lymphocytes, its 50% transforming dose was approximately 100-fold less than that of the EBER-positive EBV. We then engineered the genome of EBER-deleted virus and generated a recombinant virus with the EBER genes reconstituted at their native locus. The resultant EBER-reconstituted EBV exhibited restored transforming ability. In addition, lymphoblastoid cell lines established with the EBER-deleted EBV grew significantly more slowly than those established with wild-type or EBER-reconstituted EBV, and the difference between the growth rates was especially highlighted when the cells were plated at low cell densities. These results clearly demonstrate that EBERs significantly contribute to the efficient growth transformation of B lymphocytes by enhancing the growth potential of transformed lymphocytes.  相似文献   

15.
Specifically mutated Epstein-Barr virus (EBV) recombinants which truncate latent membrane protein 2A (LMP2A) and LMP2B after 260 of 497 amino acids and after 141 of 378 amino acids, respectively, were constructed. Despite truncation before the last seven transmembrane domains and the carboxy terminus, the mutant recombinants were not altered in initiation of primary B-lymphocyte infection or growth transformation, in expression of nuclear protein 1 or 2 or LMP1, or in induction of lytic EBV replication. Cells transformed by mutant virus recombinants were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, serum requirement, or clonogenic growth in soft agar. Together with similar analyses of a mutation stopping translation of the LMP2A amino-terminal cytoplasmic domain, these results indicate that LMP2 is not required for primary B-lymphocyte infection in vitro.  相似文献   

16.
Epstein-Barr virus (EBV) DNA isolated from the frequently studied and unusual Burkitt's lymphoma cell line, Daudi, contains a 7.4-kb deletion, similar to (but larger than) that found in a non-transforming isolate of the virus, P3HR-1. A comparison of EBV sequence in Daudi cells with that from a comparable region in a wild-type, transforming strain of the virus (B95-8) indicates that at least two of the previously identified RNAs, a highly repetitive sequence, and other interesting coding or structural features should be absent in Daudi EBV DNA as a consequence of the deletion. The information removed by the deletion, as well as that which might be generated by juxtaposition of two regions of the genome that are not adjacent in most strains of the virus are discussed.  相似文献   

17.
Epstein-Barr virus (EBV) is a tumor virus with marked B lymphotropism. After crossing the B-cell membrane, the virus enters cytoplasmic vesicles, where decapsidation takes place to allow transfer of the viral DNA to the cell nucleus. BNRF1 has been characterized as the EBV major tegument protein, but its precise function is unknown. We have constructed a viral mutant that lacks the BNRF1 gene and report here its in vitro phenotype. A recombinant virus devoid of BNRF1 (DeltaBNRF1) showed efficient DNA replication and production of mature viral particles. B cells infected with the DeltaBNRF1 mutant presented viral lytic antigens as efficiently as B cells infected with wild-type or BNRF1 trans-complemented DeltaBNRF1 viruses. Antigen presentation in B cells infected with either wild-type (EBV-wt) or DeltaBNRF1 virus was blocked by leupeptin addition, showing that both viruses reach the endosome/lysosome compartment. These data were confirmed by direct observation of the mutant virus in endosomes of infected B cells by electron microscopy. However, we observed a 20-fold reduction in the number of B cells expressing the nuclear protein EBNA2 after infection with a DeltaBNRF1 virus compared to wild-type infection. Likewise, DeltaBNRF1 viruses transformed primary B cells much less efficiently than EBV-wt or BNRF1 trans-complemented viruses. We conclude from these findings that BNRF1 plays an important role in viral transport from the endosomes to the nucleus.  相似文献   

18.
19.
20.
Epstein-Barr virus (EBV) transformation of B cells from fetal cord blood in vitro varies depending on the individual sample. When a single preparation of EBV was simultaneously used to transform fetal cord blood samples from six different individuals, the virus transformation titer varied from less than zero to 10(5.9). We show that this variation in EBV transformation is associated with a marked primary immune response in cord blood samples predominately involving CD4(+) T cells and CD16(+) CD56(+) NK cells. After virus challenge both CD4(+) T cells and NK cells in fetal cord blood cultures expressed the lymphocyte activation marker CD69. The cytotoxic response against autologous EBV-infected lymphoblastoid cell line (LCL) targets correlated with the number of CD16(+) CD69(+) cells and was inversely correlated with the virus transformation titer. Although NK activity was detected in fresh cord blood and increased following activation by the virus, killing of autologous LCLs was detected only following activation by exposure to the virus. Both activated CD4(+) T cells and CD16(+) NK cells were independently able to kill autologous LCLs. Both interleukin-2 and gamma interferon were produced by CD4(+) T cells after virus challenge. The titer of EBV was lower when purified B cells were used than when whole cord blood was used. Addition of monocytes restored the virus titer, while addition of resting T cells or EBV-activated CD4(+) T-cell blasts reduced the virus titer. We conclude that there are primary NK-cell and Th1-type CD4(+) T-cell responses to EBV in fetal cord blood that limit the expansion of EBV-infected cells and in some cases eliminate virus infection in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号