首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Climate is a major factor affecting the development and form of peatlands, as well as the distribution of individual bryophyte species. This paper examines the climatic and ecological gradients affecting the distribution of peatland types along a north-south gradient in the Mackenzie River Basin. Based on a TWINSPAN analysis of bryophyte abundance from 82 peatlands in the Mackenzie River Basin, seven peatland types, two with southerly geographical distributions are recognized. In the Mackenzie River Basin, such local factors as surface water chemistry, pH, and solute concentration as well as height above the water table play a significant role in determinining bryophyte species distributions. Climate is secondary. Amongst the climatic variables, precipitation, length of the growing season, and annual temperature are the most signifcant. The seven peatland groups are: widespread poor fens; peat plateaus with thermokarst pools, low-Boreal bogs; bogs and peat plateus without thermokarst pools; low-Boreal dry poor fens; wet moderate-rich fens; and wet extreme-rich fens.  相似文献   

2.
In this study, we assessed the impact of bleachedkraft pulp mill effluent (BKME) on the distributionand composition of benthic communities at JackfishBay, Lake Superior. Sediment samples were collectedfrom 44 stations from which several environmentalvariables (extractable organic chlorine [EOCl],metals, organic carbon, particle size, secchi depth,and water depth) and benthic community compositionwere determined. Relationships between environmentalvariables and benthic community structure wereassessed using canonical correspondence analysis(CCA). CCA revealed two distinct biological gradientsat Jackfish Bay, the first associated with degradedbottom sediments and nutrient enrichment and thesecond associated with water depth. Both gradientsrevealed three distinct regions at Jackfish Bay: 1) anarea of highly degraded sediments, located 300–1200 mbelow the outfall, 2) a small, mesotrophic (nutrientenriched) area adjacent to this zone, and 3) remainingareas of Jackfish Bay, including the internalreference sites in Tunnel Bay. Sediments in theimpaired region contained high concentrations oforganic matter (7–21% as loss on ignition [LOI]) andEOCl (up to 5200 mg/kg dw); together these variablesaccounted for 73% of the variation associated withthe first canonical axis of the CCA. This region wasdominated by the oligochaetes Tubifex tubifexand Limnodrilus hoffmeisteri (64–100% of thebenthic community). Sediments in the second regionwere characterized by an abundant and diverse benthiccommunity comprised of benthic harpacticoids,Chironomidae, and oligochaetes. Stations outside ofthese two regions were characterized by a benthiccommunity similar in composition to that expected foroligotrophic Lake Superior waters, including Diporiea sp., Stylodrilus heringianus, Mysis relicta, Sphaerium, Pisidium and benthicharpacticoids. Based on a Monte Carlo significancetest, benthic community structure was significantly(p = 0.01) related to the environmental variablescomprising the first axis of the CCA. Water depth wasthe most important explanatory variable associatedwith the second axis of the CCA; both taxa richnessand abundance declined significantly with increasingdepth. The comprehensive approach employed in thisstudy clearly delineated the occurrence and degree ofimpact on the benthic environment and may be useful infuture risk assessments of sites affected byanthropogenic activity.  相似文献   

3.
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation–environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools. Handling editor: S. M. Thomaz  相似文献   

4.
5.
Information on the structure of microalgal assemblages in the epiphyton and epilithon is necessary to understand the origin of phytoplankton in lowland rivers. To this end, we carried out concurrent investigations on phytoplankton, epiphyton and epilithon in 18 reaches of three Estonian rivers during the midsummers of 2002 and 2003. A total of 251 taxa was recorded, of which 192 were epiphyton species, 158 were epilithon species and 150 were phytoplankton species. Canonical correspondence analysis (CCA), based on the 31 most abundant taxa, indicated differences in the structure of the algal assemblages between the different biotopes (phytoplankton, epiphyton and epilithon) as well as between the studied rivers. The composition of the phytoplankton clearly differed from that of the other biotopes, with prevailing small flagellates, a chrysophyte (Synura uvella) and cryptophytes (Rhodomonas lacustris and Cryptomonas erosa). The epiphyton was characterized by a large number of diatoms, while the epilithic community contained filamentous cyanobacteria (Phormidium tergestinum and Planktolyngya sp.) and a green alga (Stigeoclonium tenue) in addition to diatoms. Based on redundancy analysis (RDA), phosphorous was the most relevant parameter determining the distribution of species in the phytoplankton assemblages. Shading by trees on the river bank, dissolved oxygen concentration and water temperature as well as river width determined the distribution of species in the epiphyton. The data set on the epilithon did not reveal any significant relationships between species distribution and the measured environmental parameters.  相似文献   

6.
7.
Structural and functional characteristics of zoobenthos of the Cheshskaya Bay (SE Barents Sea) were studied at 21 stations in June/July 1995. Strong prevailing cyclonic and tidal currents result in relatively uniform temperature and salinity in the area. Sediments consist mainly of sand and pebbles, while the flux of suspended matter from rivers locally increases the share of finer fractions. Analysis of species composition (419 taxa), abundance (up to 4,200 ind m−2 and up to 29,000 ind m−2 with juveniles) and biomass (up to >6,000 g wet wt m−2) indicates high species richness in most parts of the bay, especially in the northeast. Analysis of community structure using production characteristics of species revealed a general predominance of suspension feeders partitioned into seven communities. The dominant species of these communities were Mytilus edulis and Balanus crenatus (Type 1), B. crenatus (Type 2), Modiolus modiolus and Verruca stroemia (Type 3), Flustra foliacea and V. stroemia (Type 4), Hydrallmania falcata (Type 5), V. stroemia and Chirona hameri (Type 6), and Ophelia limacina (Type 7). The structure of the communities is mainly regulated by sediment type, water depth and, to some extent, by riverine input. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The structural causes of variation in leaf mass per area, and of variations in leaf structure accounted for by leaf habit and life form, were explored in a set of laboratory-grown seedlings of 52 European woody species. The leaf traits analysed included density, thickness, saturated mass/dry mass, and leaf nitrogen per mass and per area. Other traits described the anatomy of leaves, most of them relating to the lamina (proportions of palisade and spongy parenchymata, epidermis, air space and sclerified tissues, expressed as volume per leaf area, and per-cell transversal areas of epidermis and parenchymata), and another referring to the mid rib (transversal section of sclerified tissues). Across the whole set of species leaf mass per area was correlated with leaf density but not with thickness, and this was confirmed by taxonomic relatedness tests. Denser leaves corresponded with greater proportion of sclerified tissues in the lamina, smaller cells and lower water and N contents, but no relation was found with the proportion of air space in the lamina. Taxonomic relatedness analysis statistically supported the negative association of leaf density with saturated to dry leaf mass ratio. Thicker leaves also exhibited greater volume per leaf area and greater individual cell area in each of the tissues, particularly parenchyma. Mean leaf mass per area and leaf thickness were lower in deciduous than in evergreen species, but no significant differences in leaf density, proportion of sclerified tissues in the lamina or cell area were found between the two groups. Leaf mass per area was higher in trees and subshrubs than in shrubs and climbers-plus-scramblers, this rank being equal for leaf density and proportion of sclerified tissues in the lamina, and reversed for cell area. Given the standardised environment and ontogenetic phase of the seedlings, we conclude that variation in leaf structure and anatomy among species and species groups has a strong genetic basis, and is already expressed early in the development of woody plants. From an ecological viewpoint, we can interpret greater leaf mass per area across this species set as greater allocation to support and defence functions, as shown predominantly by species from resource-poor environments. Received: 16 August 1999 / Accepted: 29 March 2000  相似文献   

9.
The aim of this study was to examine whether the terminal restriction fragment length polymorphism (T-RFLP) analysis represents an appropriate technique for monitoring highly diverse soil bacterial communities, i.e. to assess spatial and/or temporal effects on bacterial community structure. The T-RFLP method, a recently described fingerprinting technique, is based on terminal restriction fragment length polymorphisms between distinct small-subunit rRNA gene sequence types. This technique permits an automated quantification of the fluorescence signal intensities of the individual terminal restriction fragments (T-RFs) in a given community fingerprint pattern. The indigenous bacterial communities of three soil plots located within an agricultural field of 110 m(2) were compared. The first site was planted with non-transgenic potato plants, while the other two were planted with transgenic GUS and Barnase/Barstar potato plants, respectively. Once prior to planting and three times after planting, seven parallel samples were taken from each of the three soil plots. The T-RFLP analysis resulted in very complex but highly reproducible community fingerprint patterns. The percentage abundance values of defined T-RFs were calculated for the seven parallel samples of the respective soil plot. A multivariate analysis of variance was used to test T-RFLP data sets for significant differences. The statistical treatments clearly revealed spatial and temporal effects, as well as spacextime interaction effects, on the structural composition of the bacterial communities. T-RFs which showed the highest correlations to the discriminant factors were not those T-RFs which showed the largest single variations between the seven-sample means of individual plots. In summary, the T-RFLP technique, although a polymerase chain reaction-based method, proved to be a suitable technique for monitoring highly diverse soil microbial communities for changes over space and/or time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号