首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung (FRL) cells is increased approximately 2 to 3-fold within 18 h of retinoic acid addition. Analysis of 125I-EGF binding assays at 0 C reveals approximately 25,000 receptors per cell, while analysis of growth factor binding to retinoic acid-treated cells demonstrates an increase in receptor levels to approximately 70,000 receptors per cell with no detectable changes in receptor affinities. We show by immunoprecipitation of 35S-methionine labeled EGF receptors that retinoic acid addition produces an increase in the accumulation of EGF receptor protein. Using brief pulses of 35S-methionine, an increase in EGF receptor synthesis can be identified within 3 h after retinoic acid addition. These results are the first to demonstrate that a retinoic acid-induced increase in 125I-EGF binding capacity is due to increased EGF receptor protein synthesis. Also, we find that a transient decrease in the rate of EGF receptor turnover occurs when retinoic acid is initially added to FRL cells. On the basis of our data, we conclude that the retinoic acid-induced accumulation of EGF receptors in FRL cells is primarily due to increased receptor synthesis. The effect of retinoic acid on EGF receptor turnover may be a secondary factor, influencing the rate at which receptors accumulate.  相似文献   

3.
Retinoic acid has been shown to induce a 2.5-fold increase in 125I-EGF binding capacity through increased EGF receptor synthesis in a fetal rat lung (FRL) cell line (1). In FRL cells, incubation with either EGF or retinoic acid induces a modest increase in PGE2 secretion (80% or 40%, respectively). However, in the presence of both EGF and retinoic acid, FRL cells exhibit a 6.4-fold increase in PGE2 secretion. Retinoic acid and EGF dose-response curves demonstrate that the effect on PGE2 secretion correlates with the retinoic acid induced increase in EGF receptors. These data suggest a relationship between increased EGF receptor expression and increased EGF responsiveness. Furthermore, these data indicate a potential mechanism by which EGF and retinoic acid may interact in lung physiology.  相似文献   

4.
5.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung cells is decreased by approximately 50% following 24-h dexamethasone treatment. Ligand binding assays identified an average of 30,000 receptors per cell in untreated FRL cells, while analysis of dexamethasone treated cells showed a decrease to about 16,000 receptors per cell. No substantial changes in receptor affinities were detected. Immunoprecipitation of 35S-methionine-labeled EGF receptor protein demonstrated a 50% decrease in total EGF receptor protein after 24-h dexamethasone treatment. Brief pulse labeling with 35S-methionine showed that the reduction in total EGF receptor protein content was due to a decrease in EGF receptor synthesis. Receptor synthesis declined about 25% after 1 h of dexamethasone treatment and at 3 h, EGF receptor synthesis was maximally decreased to nearly 50% that of cells not exposed to dexamethasone. Dexamethasone treatment was also effective in reducing EGF receptor synthesis in cells pretreated with retinoic acid, an agent which enhances receptor synthesis. These data are the first to document a dexamethasone-induced decrease in EGF receptor synthesis. Furthermore, these findings may provide a plausible mechanism by which dexamethasone could regulate EGF responsiveness.  相似文献   

6.
7.
8.
We investigated mechanisms by which epidermal growth factor (EGF) reduces angiotensin II (AngII) surface receptor density and stimulated actions in vascular smooth muscle cells (VSMC). EGF downregulated specific AngII radioligand binding in intact cultured rat aortic smooth muscle cells but not in cell membranes and also inhibited AngII-stimulated contractions of aortic segments. Inhibitors of cAMP-dependent kinases, PI-3 kinase, MAP kinase, cyclooxygenase, and calmodulin did not prevent EGF-mediated downregulation of AngII receptor binding, whereas the EGF receptor kinase inhibitor AG1478 did. Total cell AngII AT1a receptor protein content of EGF-treated and untreated cells, measured by immunoblotting, did not differ. Actinomycin D or cytochalasin D, which interacts with the cytoskeleton, but not the protein synthesis inhibitor cycloheximide, prevented EGF from downregulating AngII receptor binding. Consistently, EGF inhibited AngII-stimulated formation of inositol phosphates in the presence of cycloheximide but not in the presence of actinomycin D or cytochalasin D. In conclusion, EGF needs an intact signal transduction pathway to downregulate AngII surface receptor binding, possibly by altering cellular location of the receptors.  相似文献   

9.
10.
11.
12.
We previously have reported that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], dexamethasone, and retinoic acid inhibit collagen synthesis in rat osteoblast-like cell primary cultures. We also have found that dexamethasone increases 1,25-(OH)2D3 receptor levels in these cells. Furthermore, this increase in 1,25-(OH)2D3 receptor level is paralleled by an enhanced inhibition of collagen synthesis when dexamethasone and 1,25-(OH)2D3 are used in combination. In contrast, retinoic acid at high doses decreases 1,25-(OH)2D3 receptor level in rat osteoblast-like cells and attenuates 1,25-(OH)2D3 inhibition of collagen synthesis. In the present study, we have used a [32P]cDNA probe for rat pro alpha 1 (I) to determine if these osteotropic agents act by modulating steady state procollagen mRNA levels. Hybridization with a [32P]cDNA probe for human actin was used as a control. We find that the steady state levels of procollagen mRNA are decreased in all cases, while there are negligible changes in actin mRNA levels. Dexamethasone, at the low dose of 13 nM, acts synergistically with 1,25-(OH)2D3 in decreasing procollagen mRNA levels. The effects of retinoic acid and 1,25-(OH)2D3 are additive at low doses (13 and 130 nM); however, at a high dose of retinoic acid (1.3 microM), combined treatment with 1,25-(OH)2D3 does not reduce procollagen mRNA levels beyond the decrease due to retinoic acid alone. The reduction in procollagen mRNA level after each of these treatments falls in the same range as inhibition of collagen synthesis measured at the protein level. These data suggest that the synthesis of collagen under these treatments is controlled primarily through modulation of steady state procollagen mRNA levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
16.
17.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

18.
Regulation of epidermal growth factor receptor by estrogen   总被引:22,自引:0,他引:22  
  相似文献   

19.
Retinoic acid receptors are members of the steroid/thyroid hormone receptor superfamily. Pursuant to the discovery that dexamethasone increases complement factor H expression, we examined the effects of retinoic acid on this gene. Both H mRNA and protein levels are increased by retinoic acid in L cells. Using the luciferase reporter gene system we have identified a region of the H promoter required for the retinoic acid response. This region contains an imperfect palindrome of the TGACC motif, present in thyroid hormone and estrogen-responsive elements. We demonstrate specific binding of the retinoic acid receptor beta to this sequence of the H gene by DNA-protein gel retardation assay. Therefore, these studies extend the sphere of influence of the retinoids to complement, an intrinsic component of the humoral immune system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号