首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motions of the temporomandibular joint (TMJ) involve both translation and rotation; however, there may be substantial variations from one human to another, and these variations present significant difficulties when designing TMJ prostheses. The disc–condyle glides along the temporal bone and the condyle centre describe a curve that depends on the individual morphology.

This study analyses disc–condyle rotatory and translatory displacements moving all along the temporal bone facets which are mainly composed of two areas: the articular tubercle slope (ATS) and the preglenoid plane separated by the articular tubercle crest. Displacements were quantified using 3D video analysis, and this technique was computer-assisted.

From a population of 32 volunteers, we were able to establish a correlation between the kinematic characteristics of the joint and the disc–condyle trajectories. This study quantifies the geometrical characteristics of the ATS and their inter-individual variations, which are useful in TMJ prosthesis design.  相似文献   

2.
Motions of the temporomandibular joint (TMJ) involve both translation and rotation; however, there may be substantial variations from one human to another, and these variations present significant difficulties when designing TMJ prostheses. The disc-condyle glides along the temporal bone and the condyle centre describe a curve that depends on the individual morphology. This study analyses disc-condyle rotatory and translatory displacements moving all along the temporal bone facets which are mainly composed of two areas: the articular tubercle slope (ATS) and the preglenoid plane separated by the articular tubercle crest. Displacements were quantified using 3D video analysis, and this technique was computer-assisted. From a population of 32 volunteers, we were able to establish a correlation between the kinematic characteristics of the joint and the disc-condyle trajectories. This study quantifies the geometrical characteristics of the ATS and their inter-individual variations, which are useful in TMJ prosthesis design.  相似文献   

3.
目的:探讨采用口腔内入路手术复位固定方法治疗下颌骨髁突颈骨折患者的临床效果。方法:将我院收治的20例下颌骨髁突颈骨折患者均使用口腔内入路手术复位固定方法治疗,将患者的骨折片与升支后缘骨块进行手术复位固定,并于原手术切口行回植,重建患者的下颌关节。结果:治疗后咬合关系异常者1例,开口范围限制者0例,关节疼痛者1例,均少于治疗前均为20例;治疗后关节间隙缩小者1例,髁突骨折块形状异常者1例,均少于治疗前均为20例。治疗后髁突稳定者19例,多于治疗前的1例。结论:髁突骨折治疗手术各有优缺点,采用口腔内入路手术复位固定方法治疗髁突高位骨折患者,虽然手术操作难度大,但能较好地克服了术后患者外部皮肤瘢痕明显的问题,有利于保护患者面部神经,提高患者治疗质量水平,值得临床上推广与进一步研究。  相似文献   

4.
Previously, bio-mechanical studies on the temporomandibular joint have concentrated mainly on the mandibular condyle while the articular eminence has been largely overlooked. Furthermore, research on the mechanical properties of bone using finite element analysis has focused on the cortical bone in preference to cancellous bone. In this study morphorogical changes in the internal structure of the articular eminence as related to child growth were examined using Micro-CT. Morphometric analysis of samples of cancellous bone representing both deciduous and early mixed dentitions showed an increase in the bone volume fraction and trabecular thickness in the early mixed dentition, and finite element analysis indicated directional transmission of stress as well. These results suggest that the morphology of the trabecular bone was altered to adapt to the functional growth progressed from the deciduous to the early mixed dentition.  相似文献   

5.
One of the most significant characteristics of the temporomandibular joint (TMJ) is that it is in fact composed of two joints. Several finite element simulations of the TMJ have been developed but none of them analysed the different responses of its two sides during nonsymmetrical movement. In this paper, a lateral excursion of the mandible was introduced and the biomechanical behaviour of both sides was studied. A three-dimensional finite element model of the joint comprising the bone components, both articular discs, and the temporomandibular ligaments was used. A fibre-reinforced porohyperelastic model was introduced to simulate the behaviour of the articular discs, taking into account the orientation of the fibres in each zone of these cartilage components. The mandible movement during its lateral excursion was introduced as the loading condition in the analysis. As a consequence of the movement asymmetry, the discs were subjected to different load distributions. It was observed that the maximal shear stresses were located in the lateral zone of both discs and that the lateral attachment of the ipsilateral condyle-disc complex suffered a large distortion, due to the compression of this disc against the inferior surface of the temporal bone. These results may be related with possible consequences of a common disorder called bruxism. Although it would be necessary to perform an exhaustive analysis of this disorder, including the contact forces between the teeth during grinding, it could be suggested that a continuous lateral movement of the jaw may lead to perforations of both discs in their lateral part and may damage the lateral attachments of the disc to the condyle.  相似文献   

6.
This paper deals with four cases of temporomandibular arthritis encountered in the mandibles of individuals who lived in Anatolia during protohistorical and historical times. Among these cases, are two mandibular condyles belonging to the Neolithic period and one mandibular condyle belonging to the Chalcolithic period showing an osteo-arthritic lesion. While in the temporomandibular joint of the individual belonging to Middle Bronze Age, arthritic double condyles is shown resulting in ankylosis.  相似文献   

7.
Honda K  Natsumi Y  Urade M 《Gerodontology》2008,25(4):251-257
Objectives: The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Materials and methods: Thirty‐seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. Results: The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.  相似文献   

8.
This paper presents the author's experience with interpositional arthroplasty using an acrylic cylinder in 70 cases of bony ankylosis of the temporomandibular joint. Ankylosis followed trauma in all but one patient. The diagnosis was established when restriction of mouth opening was associated with roentgenologic evidence of deformation of the condyle, obliteration of the joint space, and abnormal bone formation in and around the joint. The pathologic changes were classified into four types depending on severity, and each type influenced the treatment. Surgical treatment included creation of a transversely elliptical gap between the two bony components of the joint using a neurosurgical burr and perforator and a chisel through a preauricular approach and interposition of an acrylic cylinder. This maintained the gap, facilitated movement, and encouraged nonunion. The results following a long follow-up of 2 to 10 years showed uniformly good results with a range of mouth opening varying from 2 to 5 cm. Only three bilateral cases recurred and two others had a limited range of mouth opening, with interincisor distance varying from 2 to 2.5 cm.  相似文献   

9.
One of the essential causes of disk disorders is the pathologic change in the ligamentous attachments of the disk-condyle complex. In this paper, the response of the soft components of a human temporomandibular joint during mouth opening in healthy and two pathologic situations was studied. A three-dimensional finite element model of this joint comprising the bone components, the articular disk, and the temporomandibular ligaments was developed from a set of medical images. A fiber reinforced porohyperelastic model was used to simulate the behavior of the articular disk, taking into account the orientation of the fibers in each zone of this cartilage component. The condylar movements during jaw opening were introduced as the loading condition in the analysis. In the healthy joint, it was obtained that the highest stresses were located at the lateral part of the intermediate zone of the disk. In this case, the collateral ligaments were subject to high loads, since they are responsible of the attachment of the disk to the condyle during the movement of the mandible. Additionally, two pathologic situations were simulated: damage of the retrodiscal tissue and disruption of the lateral discal ligament. In both cases, the highest stresses moved to the posterior part of the disk since it was displaced in the anterior-medial direction. In conclusion, in the healthy joint, the highest stresses were located in the lateral zone of the disk where perforations are found most often in the clinical experience. On the other hand, the results obtained in the damaged joints suggested that the disruption of the disk attachments may cause an anterior displacement of the disk and instability of the joint.  相似文献   

10.
The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa's articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis.  相似文献   

11.
Unpredictable growth pattern of costochondral graft.   总被引:6,自引:0,他引:6  
B Guyuron  C I Lasa 《Plastic and reconstructive surgery》1992,90(5):880-6; discussion 887-9
Costochondral grafts have gained increasing popularity in reconstruction of the temporomandibular joint and condyle in children. This is a report on the long-term follow-up of eight adolescent patients who underwent reconstruction of the temporomandibular joint and ramus for correction of hemifacial microsomia or trauma-related temporomandibular joint ankylosis during varying periods of growth. Six patients had hemifacial microsomia, and two suffered from posttraumatic temporomandibular joint ankylosis. Average follow-up was 80.4 months. Four patients had excessive growth of the graft, one patient had suboptimal growth, and three patients had no growth. In addition, one patient had undergone four procedures for significant graft overgrowth. Based on this study and review of the literature, we have concluded that the growth pattern of the costochondral graft is extremely unpredictable, ankylosis is a common problem following a temporomandibular joint reconstruction with costochondral graft, and mandibular overgrowth on the grafted site can actually be more troublesome than the lack of growth. Furthermore, maxillary growth is proportionately influenced by vertical mandibular growth of the graft, while the horizontal maxillary growth is not altered. Ankylosis is a result of ossification of the cartilaginous portion and the three-dimensional graft overgrowth, aggressively extending beyond the cartilage graft boundary. Based on this study, we recommend that this procedure be performed only on severe deficiencies. Adequate amounts of soft tissue should be retained between the skull base and the graft, and we further recommend harvesting the graft from the fourth or fifth rib, which may reduce the potential for overgrowth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Finite element analysis is a useful analytical tool for the design of biomedical implants. The aim of this study was to investigate the behavior of temporomandibular joint implants with multiple design variables of the screws used for fixation of the implant. A commercially available implant with full mandible was analyzed using a finite element software package. The effects of different design variables such as orientation, diameter and stem length of the screws on the stress distribution in bone for two different surgical procedures were investigated. Considering the microstrain in bone as a principal factor, the acceptable ranges for screw diameter and length were determined. Parallel orientation of the screws performed better from a stress point of view when compared to the zig-zag orientation. Sufficient contact between the implant collar and mandibular condyle was shown to reduce the peak stresses which may lead to long term success. The distance between screw holes in the parallel orientation was much closer when compared to the zig-zag orientation. However, the stresses in bone near the screw hole area for the parallel orientation were within acceptable limits.  相似文献   

14.
The mammalian mandible, and in particular the human mandible, is generally thought to function as a lever during biting. This notion, however, has not gone unchallenged. Various workers have suggested that the mandible does not function as a lever, and they base this proposition on essentially two assertions: (1) the resultant of the forces produced by the masticatory muscles always passes through the bite point; (2) the condylar neck and/or the temporomandibular joint is unsuited to withstand reaction forces during biting. A review of the electromyographic data and of the properties of the tissues of the temporomandibular joint do not support the non-lever hypothesis of mandibular function. In addition, an analysis of the strength of the condylar neck demonstrates that this structure is strong enough to withstand the expected reaction force during lever action. Ordinarily the human mandible and the forces that act upon it are analyzed solely in the lateral projection. Moments are then usually analyzed about the mandibular condyle; however, some workers have advocated taking moments about other points, e.g., the instantaneous center of rotation. Obviously it makes no difference as to what point is chosen since the moments about any point during equilibrium conditions are equal to zero. It is also useful to analyze the forces acting on the mandible in the frontal projection, particularly during unilateral biting. The electromyographic data suggest that during powerful unilateral molar biting the resultant adductor muscle force is passing between the bite point and the balancing (non-biting side) condyle. Therefore, in order for this system to be in equilibrium there must be a reaction force acting on the balancing condyle. This suggests that reaction forces are larger on the balancing side than on the working side, and possibly explains why individuals with a painful temporomandibular joint usually prefer to bite on the side of the diseased joint.  相似文献   

15.
The temporomandibular joint (TMJ) is a specialized synovial joint essential for the mobility and function of the mammalian jaw. The TMJ is composed of the mandibular condyle, the glenoid fossa of the temporal bone, and a fibrocartilagenous disc interposed between these bones. A fibrous capsule, lined on the luminal surface by the synovial membrane, links these bones and retains synovial fluid within the cavity. The major component of synovial fluid is lubricin, a glycoprotein encoded by the gene proteoglycan 4 (Prg4), which is synthesized by chondrocytes at the surface of the articular cartilage and by synovial lining cells. We previously showed that in the knee joint, Prg4 is crucial for maintenance of cartilage surfaces and for regulating proliferation of the intimal cells in the synovium. Consequently, the objective of this study was to determine the role of lubricin in the maintenance of the TMJ. We found that mice lacking lubricin have a normal TMJ at birth, but develop degeneration resembling TMJ osteoarthritis by 2 months, increasing in severity over time. Disease progression in Prg4 −/− mice results in synovial hyperplasia, deterioration of cartilage in the condyle, disc and fossa with an increase in chondrocyte number and their redistribution in clusters with loss of superficial zone chondrocytes. All articular surfaces of the joint had a prominent layer of protein deposition. Compared to the knee joint, the osteoarthritis-like phenotype was more severe and manifested earlier in the TMJ. Taken together, the lack of lubricin in the TMJ causes osteoarthritis-like degeneration that affects the articular cartilage as well as the integrity of multiple joint tissues. Our results provide the first molecular evidence of the role of lubricin in the TMJ and suggest that Prg4 −/− mice might provide a valuable new animal model for the study of the early events of TMJ osteoarthritis.  相似文献   

16.
We have operated on 6 cases of temporomandibular joint ankylosis, resecting a small amount of bone to create a false joint and then covering the two joint surfaces with sheets of perichondrium (autogenous, from the ribs). The perichondrium forms new cartilage on the joint surfaces, and the early results are encouraging. Only one of these cases was operated upon more than one year ago. He has an excellent result and this case is reported on in detail.  相似文献   

17.
Transverse mandibular distraction osteogenesis involves moving the osteotomized segments of the mandible in either a varus or valgus direction. This maneuver allows for widening of the bigonial distance or for a lateral shift of an asymmetric mandibular midline. During this process, a significant amount of torque is placed on the mandibular condyles, because they act as the pivot point for the mandibular translation. Although standard linear distraction osteogenesis induces transient, reversible changes in the temporomandibular joint, it is not known what effect the varus and valgus stresses of transverse distraction have on the temporomandibular joint. We therefore designed a study to document the temporomandibular joint changes following various degrees of transverse distraction.Bilateral transverse mandibular distraction was performed on 10 adult, female mongrel dogs using an external, multiplanar mandibular distraction device. The distraction protocol was as follows: (1) complete osteotomy at the angle of the mandible, (2) 5-day latency period, (3) distraction rate of 1 mm/day, (4) rhythm of one turn per day, (5) linear activation 16 to 30 mm bilaterally, and (6) 8-week consolidation period. A variety of varus and valgus distraction vectors were applied to the mandible only after 10 mm of initial linear distraction had been achieved. Posteroanterior and lateral cephalograms were performed throughout the entire process. Pre-distraction and post-consolidation computed tomographic scans were also performed. Changes in mandibular conformation, axis of rotation, temporomandibular joint structure, and glenoid fossa changes were directly assessed by evaluating the postmortem craniofacial skeleton. The findings were compared with those of normal, age-matched mongrel dog skulls.Significant remodeling changes were observed in the temporomandibular joints of all animals involved in the study. The mandibular condyles demonstrated varying degrees of flattening and erosion at all contact points with the craniofacial skeleton. In some cases, the condyle became part of the distraction regenerate process and was hypertrophied in all dimensions. The condyles were frequently displaced out of the glenoid fossa, particularly on the side in the direction of varus distraction. When the latter occurred, a new fossa was created on the undersurface of the zygomatic arch. Varying degrees of mandibular rotation in the sagittal plane were also observed, which led to abnormal torquing of the condyles in the coronal plane, depending on whether the axis of rotation occurred primarily around the condyle or around the distraction regenerate zone.In conclusion, transverse mandibular distraction is an effective means of producing a varus or valgus shift in the gonion relative to the midsagittal plane. However, unlike linear or angular mandibular distraction, transverse distraction has a multitude of nontransient effects on the temporomandibular joint. Therefore it must be emphasized that in clinical practice, transverse distraction should be used cautiously. One must also be aware that such a maneuver in distraction can have negative effects on the temporomandibular joint.  相似文献   

18.
Kinematics of the human masticatory system during opening and closing of the jaw have been reported widely. Evidence has been provided that the opening and closing movement of the jaw differ from one another. However, different approaches of movement registration yield divergent expectations with regard to a difference in loading of the temporomandibular joint between these movements. Because of these diverging expectations, it was hypothesized that joint loading is equal during opening and closing. This hypothesis was tested by predicting loading of the temporomandibular joint during an unloaded opening and closing movement of the jaw by means of a three-dimensional biomechanical model of the human masticatory system. Model predictions showed that the joint reaction forces were markedly higher during opening than during closing. The predicted opening trace of the centre of the mandibular condyle was located cranially of the closing trace, with a maximum difference between the traces of 0.45 mm. The hypothesis, postulating similarity of joint loading during unloaded opening and closing of the jaw, therefore, was rejected. Sensitivity analysis showed that the reported differences were not affected in a qualitative sense by muscular activation levels, the thickness of the cartilaginous layers within the temporomandibular joint or the gross morphology of the model. Our predictions indicate that the TMJ is loaded more heavily during unloaded jaw opening than during unloaded jaw closing.  相似文献   

19.
Mutation of the human TRPS1 gene leads to trichorhinophalangeal syndrome (TRPS), which is characterized by an abnormal development of various organs including the craniofacial skeleton. Trps1 has recently been shown to be expressed in the jaw joints of zebrafish; however, whether Trps1 is expressed in the mammalian temporomandibular joint (TMJ), or whether it is necessary for TMJ development is unknown. We have analyzed (1) the expression pattern of Trps1 during TMJ development in mice and (2) TMJ development in Trps1 knockout animals. Trps1 is expressed in the maxillo-mandibular junction at embryonic day (E) 11.5. At E15.5, expression is restricted to the developing condylar cartilage and to the surrounding joint disc progenitor cells. In Trps1 knockout mice, the glenoid fossa of the temporal bone forms relatively normally but the condylar process is extremely small and the joint disc and cavities do not develop. The initiation of condyle formation is slightly delayed in the mutants at E14.5; however, at E18.5, the flattened chondrocyte layer is narrowed and most of the condylar chondrocytes exhibit precocious chondrocyte maturation. Expression of Runx2 and its target genes is expanded toward the condylar apex in the mutants. These observations underscore the indispensable role played by Trps1 in normal TMJ development in supporting the differentiation of disc and synoviocyte progenitor cells and in coordinating condylar chondrocyte differentiation.  相似文献   

20.
The articular disc in the temporomandibular joint plays an important role in mandibular growth. Functional appliances induce regeneration of the condyle even after condylectomy. The aim of this study was to examine the role of the articular disc in regeneration of the condyle after unilateral condylectomy with use of a functional appliance in growing rats. Fifty growing rats were subjected to unilateral condylectomy and then half of them underwent discectomy. The functional appliance was applied to half of the rats in each group to induce regeneration of the condyle. Four and eight weeks later, morphometric and histologic analyses of the mandible were performed. Regeneration of the condyle was demonstrated in the two condylectomy groups. In the condylectomy+appliance group, the shape and cartilage of the condyle were equivalent to a normal condyle. However, regeneration of the condyle was not observed in the two discectomy groups even with the use of the functional appliance. The articular disc appears to be crucial in the regeneration of a damaged condyle, suggesting that defects or damage to the articular disc may influence mandibular growth and regeneration or repair of the condyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号