共查询到20条相似文献,搜索用时 140 毫秒
1.
Kin17, a mouse nuclear zinc finger protein that binds preferentially to curved DNA. 总被引:2,自引:0,他引:2 下载免费PDF全文
A Mazin T Timchenko J Mnissier-de Murcia V Schreiber J F Angulo G de Murcia R Devoret 《Nucleic acids research》1994,22(20):4335-4341
Kin17 is a 45 kDa protein encoded by the KIN17 gene located on mouse chromosome 2, band A. The kin17 amino acid sequence predicts two domains, which were shown to be functional: (i) a bipartite nuclear localization signal (NLS) that can drive the protein to the cell nucleus, (ii) a bona fide zinc finger of the C2H2 type. The zinc finger is involved in kin17 binding to double-stranded DNA since a mutant deleted of the zinc finger, kin17 delta 1, showed reduced binding. Single-stranded DNA was bound poorly by kin17. Interestingly, we found that kin17 protein showed preferential binding to curved DNA from either pBR322 or synthetic oligonucleotides. Binding of kin17 to a non-curved DNA segment increased after we had inserted into it a short curved synthetic oligonucleotide. Kin17 delta 2, a mutant deleted of 110 amino acids at the C-terminal end, still exhibited preferential binding to curved DNA and so did kin17 delta 1, suggesting that a domain recognizing curved DNA is located in the protein core. 相似文献
2.
We searched in Bacillus subtilis for proteins that bind preferentially to curved DNA. Two proteins of 9 and 15 kDa displaying this property were purified from exponentially growing cells of B. subtilis strain 168. Sequencing of N-terminal amino acids identified them as the proteins HBsu and L17 respectively. The overproduction of L17 from B. subtilis in Escherichia coli was shown to have a strong effect on nucleoid morphology and segregation. 相似文献
3.
4.
5.
Isolation of a protein fraction that binds preferentially to chicken middle repetitive DNA 总被引:6,自引:0,他引:6
We have fractionated oviduct tissue extracts by using a combination of ion-exchange and DNA-Sephadex chromatography. By comparing the electrophoretic patterns of proteins eluted from competing specific and nonspecific DNA columns, we isolated a fraction which bound with specificity to columns containing the chicken middle repetitive sequence "CR1". This fraction showed a clear preference for binding to separate, cloned CR1 fragments derived from either the 5' or the 3' transition region of the ovalbumin gene domain when examined by using nitrocellulose filter binding assays. To localize the protein binding site, a CR1 clone was digested with various restriction enzymes, and the resulting fragments were examined for preferential protein binding. Results suggest that the binding site lies within a 39-nucleotide sequence which is highly conserved among different CR1 elements. This finding represents the first isolation of a protein which demonstrates a preference for binding to a middle repetitive sequence and suggests that this interaction may have a biological role. The DNA column competition adsorption method should have general application to the isolation of other gene-regulating proteins possessing DNA sequence preference. 相似文献
6.
HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG. 总被引:3,自引:3,他引:3 下载免费PDF全文
M E Churchill D N Jones T Glaser H Hefner M A Searles A A Travers 《The EMBO journal》1995,14(6):1264-1275
The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region. 相似文献
7.
8.
Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. 总被引:16,自引:0,他引:16
Hisami Yamada Takayuki Yoshida Ken-ichi Tanaka Chihiro Sasakawa Takeshi Mizuno 《Molecular & general genetics : MGG》1991,230(1-2):332-336
Summary We previously demonstrated that the E. coli protein, H-NS (or Hla), encoded by the gene hns (or osmZ or bglY preferentially recognizes curved DNA sequences in vitro. In order to gain further insight into the complex function of H-NS and the significance of DNA curvature, we constructed a structurally defined hns deletion mutant on the E. coli chromosome. The hns deletion mutant thus obtained showed a variety of phenotypes previously for other lesions in hns. It was further demonstrated that, in this hns deletion background, numerous E. coli cellular proteins were either strongly expressed or remarkably repressed, as compared to their expression levels in wild-type cells. 相似文献
9.
10.
The histone-like protein HU from Escherichia coli is involved in DNA compaction and in processes such as DNA repair and recombination. Its participation in these events is reflected in its ability to bend DNA and in its preferred binding to DNA junctions and DNA with single-strand breaks. Deinococcus radiodurans is unique in its ability to reconstitute its genome from double strand breaks incurred after exposure to ionizing radiation. Using electrophoretic mobility shift assays (EMSA), we show that D.radiodurans HU (DrHU) binds preferentially only to DNA junctions, with half-maximal saturation of 18 nM. In distinct contrast to E.coli HU, DrHU does not exhibit a marked preference for DNA with nicks or gaps compared to perfect duplex DNA, nor is it able to mediate circularization of linear duplex DNA. These unexpected properties identify DrHU as the first member of the HU protein family not to serve an architectural role and point to its potential participation in DNA recombination events. Our data also point to a mechanism whereby differential target site selection by HU proteins is achieved and suggest that the substrate specificity of HU proteins should be expected to vary as a consequence of their individual capacity for inducing the required DNA bend. 相似文献
11.
Li C Zhang Y Vankemmelbeke M Hecht O Aleanizy FS Macdonald C Moore GR James R Penfold CN 《The Journal of biological chemistry》2012,287(23):19048-19057
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein. 相似文献
12.
13.
14.
The traY gene of the Escherichia coli F plasmid has been shown by genetic studies (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980) to be involved in the site-specific nicking reaction at oriT required for the initiation of DNA transfer during bacterial conjugation. In order to assign a biochemical function to TraY protein, the traY gene was cloned in a plasmid vector which utilizes the strong T7 phi 10 promoter to overproduce the protein. The plasmid-encoded TraY protein was specifically labeled with [35S]methionine, and purification of the polypeptide was accomplished by monitoring the radioactive label. Purified TraY protein had a relative molecular mass of approximately 17,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The amino terminus of the purified protein was sequenced to confirm that the protein was encoded by the traY gene. The protein sequence revealed that the start codon for the TraY protein was a UUG codon 36 base pairs upstream of the AUG start site originally deduced from the DNA sequence (T. Fowler, L. Taylor, and R. Thompson, Gene 26:79-89, 1983). This start sequence confirmed the premise of Inamoto et al. that the F-plasmid TraY polypeptide-coding sequence would begin with UUG, creating a reading frame which renders a large degree of amino acid sequence identity with the TraY polypeptide from R100 (S. Inamoto, Y. Yoshioka, and E. Ohtsubo, J. Bacteriol. 170:2749-2757, 1988). The purified TraY protein from F bound specifically to the origin of transfer region of the F plasmid. However, no nicking activity was detected at oriT by using TraY protein or TraY protein in conjunction with helicase I. 相似文献
15.
16.
Modulated expression of promoters containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H-NS 总被引:18,自引:5,他引:13
Replacement of the CRP-binding site of the gal control region by curved sequences can lead to the restoration of promoter strength in vivo. One curved sequence called 5A6A, however, failed to do so. The gene hns exerts a strong negative control on the resulting 5A6A gal promoter as well as on the distant bla promoter, specifically in a 5A6A gal context. The product of this gene, H-NS, displays a better affinity for this particular insert compared to other curved sequences. Mechanisms by which H-NS may repress promoters both at short and long distances from a favoured binding site are discussed. 相似文献
17.
Siu Sing Tsang Urs Kuhnlein 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1982,697(2):202-212
A DNA-binding protein was partially purified from extracts of HeLa cells by high-speed centrifugation and chromatography on DEAE-cellulose, phosphocellulose and ultraviolet light-irradiated DNA-cellulose columns. It eluted from the phosphocellulose column with 0.375 M potassium phosphate and from the ultraviolet light-irradiated DNA-cellulose column between 0.5 M and 1 M NaCl. The protein binds preferentially to supercoiled PM2 DNA treated with ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene, as compared to native supercoiled PM2 DNA. The binding is non-cooperative. Nicked or linear forms of PM2 DNA (damaged or untreated) are not efficient substrates, indicating a requirement of DNA supercoiling for DNA binding. The sedimentation coefficient of the protein estimated by glycerol gradient centrifugation is 2.0–2.5 S, corresponding to a molecular weight of about 20 000–25 000 if the protein is spherical. The binding to DNA irradiated with ultraviolet light or treated with acetoxyacetylaminofluorene is optimal at around 100–200 mM NaCl and is relatively independent of temperature and pH. MgCl2 and MnCl2 at concentrations between 1 and 5 mM do not markedly affect the binding, but it is inhibited by sucrose, ATP and caffeine. The biological significance of the DNA-binding protein remains to be determined. It does not possess significant glycosylase, endonuclease or exonuclease activities. The dissociation equilibrium constant for the binding reaction of the protein to the ultraviolet light or acetoxyacetylaminofluorene-induced binding sites on DNA is estimated to be 4·10?11 M. There are at least 1·105 DNA-binding protein molecules/HeLa cell. 相似文献
18.
Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. 总被引:1,自引:1,他引:1 下载免费PDF全文
The ability of curved DNA upstream of the -35 region to affect the interaction of Escherichia coli RNA polymerase and promoter DNA was examined through the use of hybrid promoters. These promoters were constructed by substituting the curved DNA from two Bacillus subtilis bacteriophage SP82 promoters for the comparable DNA of the bacteriophage lambda promoters lambda pR and lambda pL. The SP82 promoters possessed intrinsic DNA curvature upstream of their -35 regions, as characterized by runs of adenines in phase with the helical repeat. In vitro, the relative affinities of purified sigma 70-RNA polymerase for the promoters were determined in a competition binding assay. Hybrid promoters derived from lambda pR that contained curved DNA were bound by E. coli RNA polymerase more efficiently than was the original lambda pR. Binding of E. coli RNA polymerase to these hybrid promoters was favored on superhelical DNA templates according to gel retardation analysis. Both the supercoiled and relaxed forms of the hybrid lambda pL series were better competitors for E. coli RNA polymerase binding than was the original lambda pL. The results of DNase I footprinting analysis provided evidence for the wrapping of the upstream curved DNA of the hybrid lambda pR promoters around the E. coli RNA polymerase in a tight, nucleosomal-like fashion. The tight wrapping of the upstream DNA around the polymerase may facilitate the subsequent steps of DNA untwisting and strand separation. 相似文献
19.
Murine protein which binds preferentially to oligo-C-rich single-stranded nucleic acids. 总被引:4,自引:0,他引:4 下载免费PDF全文
M Goller B Funke C Gehe-Becker B Krger F Lottspeich I Horak 《Nucleic acids research》1994,22(10):1885-1889
Two single-stranded nucleic acid binding proteins mCBP and mCTBP were identified by means of their binding to a potential recombination hotspot in LTRs of mouse retro-transposons. Both are nuclear proteins of 35 and 55 kDa respectively. mCBP binds preferentially to oligo dC, mCTBP to oligo dCdT. mCBP was purified and its cDNA was isolated and sequenced. 相似文献
20.
Microtubule-associated protein MAP2 preferentially binds to a dA/dT sequence present in mouse satellite DNA 总被引:7,自引:0,他引:7 下载免费PDF全文
Avila J Montejo de Garcini E Wandosell F Villasante A Sogo JM Villanueva N 《The EMBO journal》1983,2(8):1229-1234
Microtubule-associated protein MAP2 binds to the Sau96.1 restriction monomer fragment of mouse satellite DNA. This fragment is also present in a lower proportion in bulk DNA. The digestion of MAP2-Sau96.1 fragment complex by DNase results in the protection of certain nucleotide sequences. The sequence poly(dA)4/poly(dT)4 is mainly protected against DNase digestion. 相似文献