首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of Ca2+ in stimulation of the malate-aspartate shuttle by norepinephrine and vasopressin was studied in perfused rat liver. Shuttle capacity was indexed by measuring the changes in both the rate of production of glucose from sorbitol and the ratio of lactate to pyruvate during the oxidation of ethanol. (T. Sugano et al. (1986) Amer. J. Physiol. 251, E385-E392). Asparagine (0.5 mM), but not alanine (0.5 mM) decreased the ethanol-induced responses. Norepinephrine and vasopressin had no effect on the ethanol-induced responses when the liver was perfused with sorbitol or glycerol. In the presence of 0.25 mM alanine, norepinephrine, vasopressin, and A23187 decreased the ethanol-induced responses that occurred with the increase of flux of Ca2+. In liver perfused with Ca2+-free medium, asparagine also decreased the ethanol-induced responses, but norepinephrine and vasopressin had no effect. Aminooxyacetate inhibited the effects of norepinephrine, A23187, and asparagine. Regardless of the presence or absence of perfusate Ca2+, the combination of glucagon and alanine had no effect on the ethanol-induced responses. Norepinephrine caused a decrease in levels of alpha-ketoglutarate, aspartate, and glutamate in hepatocytes incubated with Ca2+. The present data suggest that the redistribution of cellular Ca2+ may activate the efflux of aspartate from mitochondria in rat liver, resulting in an increase in the capacity of the malate-aspartate shuttle.  相似文献   

2.
In hepatocytes isolated from fasted normal rats and incubated without albumin or gelatin, norepinephrine stimulated gluconeogenesis from fructose or dihydroxyacetone only in the absence of added calcium and from sorbitol or glycerol only in the presence of added calcium. The effects of calcium, norepinephrine, or calcium in combination with norepinephrine on the concentration of intermediary metabolites were therefore studied in hepatocytes metabolizing fructose or sorbitol as the representative oxidized or reduced substrate, respectively. With fructose as the substrate, addition of calcium increased the concentrations of lactate, pyruvate, glyceraldehyde 3-phosphate, and β-hydroxybutyrate, but decreased the concentrations of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose 6-phosphate, malate, citrate, and α-oxoglutarate. With sorbitol as the substrate, calcium increased the concentrations of pyruvate, malate, β-hydroxybutyrate, and glucose. With either substrate, calcium caused a decrease in the lactate/ pyruvate ratio and an increase in the β-hydroxybutyrate/acetoacetate ratio, indicating the stimulation of transfer of reducing equivalents from cytosol to mitochondria. With sorbitol as the substrate, and with calcium present, norepinephrine promoted further electron transfer from cytosolic to mitochondrial NAD. Enhanced cytosolic calcium concentrations, when cells are exposed to catecholamines in the presence of medium calcium, stimulate the mitochondrial α-glycerophosphate dehydrogenase and thus the transfer of electrons between cell compartments.  相似文献   

3.
In hepatocytes isolated from fasted rats, vasopressin and angiotensin II stimulate the rate of gluconeogenesis from lactate or pyruvate in a Ca2+-dependent manner similar to that previously reported for norepinephrine. Actions of the peptide hormones on gluconeogenesis from glycerol or sorbitol, reduced substrates that require oxidation before they enter the gluconeogenic pathway at triosephosphate, also resemble those of norepinephrine. Stimulation of glucose production from these substrates is observed only in the presence of extracellular Ca2+. Actions of the peptide hormones on gluconeogenesis from dihydroxyacetone or fructose, the oxidized counterparts of glycerol and sorbitol, respectively, do not resemble those of norepinephrine. While norepinephrine enhances rates of glucose production from dihydroxyacetone or fructose in the absence of extracellular Ca2+, vasopressin and angiotensin II are ineffective either in the absence or presence of extracellular Ca2+. When the oxidation-reduction state in hepatocytes metabolizing dihydroxyacetone is altered by adding an equimolar concentration of ethanol (to provide cytosolic reducing equivalents), the results are similar to those obtained when cells are incubated with the reduced counterpart of dihydroxyacetone, glycerol, i.e., the peptide hormones cause an apparent increase in the rate of glucose production in a Ca2+-dependent manner. If, on the other hand, hepatocytes are incubated with glycerol or sorbitol and an equimolar concentration of pyruvate (to provide a cytosolic hydrogen acceptor), the peptide hormones, unlike norepinephrine, are ineffective in stimulating gluconeogenesis in the absence of extracellular Ca2+. These results indicate that whereas many of the actions of vasopressin and angiotensin II are similar to those of alpha 1-adrenergic agents, there are major differences in the manner in which the hormones act at various sites to regulate gluconeogenesis.  相似文献   

4.
In isolated rat liver cells, ethanol inhibited gluconeogenesis from xylitol and sorbitol but not from fructose. Acetaldehyde, at initial concentrations of 0.2, 0.5, and 1.0 mm, stimulated gluconeogenesis from xylitol and sorbitol in the absence of pyrazole but inhibited in the presence of pyrazole. There was no effect with fructose. Acetate had no effect. Methylene blue and pyruvate (but not lactate) prevented the stimulatory as well as the inhibitory effects of acetaldehyde. Acetoacetate (but not β3-hydroxybutyrate) prevented, to a large extent, the inhibitory effects of low (but not high) concentrations of acetaldehyde. The inhibition by low concentrations of acetaldehyde appears to be mediated via acetaldehyde oxidation in the mitochondria, whereas the inhibition by high concentrations of acetaldehyde appears to reflect acetaldehyde oxidation in the cytosol. These data indicate that the inhibitory action of ethanol on glucose production from xylitol and sorbitol can be reproduced by physiological concentrations of acetaldehyde. Changes in the NAD+NADH ratio produced during acetaldehyde metabolism appear to be responsible for these effects of acetaldehyde. These changes may contribute to the actions of ethanol on gluconeogenesis from these substrates.  相似文献   

5.
Addition of pyruvate to rat islets perifused in the presence of 5 mM-glucose elicited an immediate pronounced biphasic stimulation of insulin secretion. At lower concentrations of glucose (2.5 mM), only the initial, transient, phase of secretion was observed. Pyruvate inhibited 45Ca2+ efflux from islets at 2.5 mM-glucose and stimulated efflux at 5 mM-glucose. Pyruvate also decreased the rate of efflux of 86Rb+ from perifused islets. A marked stimulation of insulin secretion and 45Ca2+ efflux rate was observed in response to 3-fluoropyruvate and 3-bromopyruvate, compounds which inhibited oxidative metabolism of [14C]glucose and [14C]pyruvate in islets. The stimulatory effects of 3-fluoro- and 3-bromo-pyruvate were associated with enhanced 86Rb+ efflux. Withdrawal of pyruvate or halogenated analogues from the perfusate resulted in a secondary stimulation of insulin release, 45Ca2+ efflux and, to some extent, 86Rb+ efflux rates. Pyruvate, 3-fluoropyruvate and 3-bromopyruvate were all effective in promoting intracellular acidification and a rise in cytosolic Ca2+ concentration, as judged from fluorescence measurements in HIT-T15 cells loaded with 2',7'-biscarboxyethyl-5'(6')-carboxyfluorescein and Quin 2 respectively. It is proposed that oxidative metabolism of pyruvate is not a prerequisite for its stimulatory actions on pancreatic beta-cells. An alternative mechanism of activation by pyruvate and its halogenated derivatives is proposed, based on the possible electrogenic flux of these anions across the cell membrane.  相似文献   

6.
The oxidative decarboxylation and subsequent production of glucose from alpha-ketobutyrate were studied using perfused livers from fasted rats. The production of 14CO2 from alpha-keto-[1-14C]butyrate increased monotonically while the production of glucose from alpha-ketobutyrate was biphasic as the perfusate concentration of alpha-ketobutyrate was increased. The biphasic gluconeogenic response using alpha-ketobutyrate as the gluconeogenic precursor was similar to that observed with propionate. The decarboxylation of alpha-ketobutyrate was found to be exquisitely sensitive to the effects of the monocarboxylate transport inhibitor, alpha-cyanocinnamate. Infusion of beta-hydroxybutyrate caused a substantial inhibition of alpha-ketobutyrate decarboxylation while dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, did not stimulate the metabolism of alpha-ketobutyrate but was inhibitory. The effects of alpha-ketobutyrate infusion on pyruvate decarboxylation were tested and it was found that at low perfusate pyruvate concentrations (ca. 0.25 mM) increasing alpha-ketobutyrate led to increasing inhibition of pyruvate decarboxylation, while at high perfusate pyruvate concentrations (ca. 2.5 mM) an initial inhibition was apparent which did not increase substantially with increasing alpha-ketobutyrate concentrations. The results obtained indicate that the regulation of alpha-ketobutyrate metabolism by oxidative decarboxylation differs significantly from that of pyruvate. In addition, while the rate of gluconeogenesis using alpha-ketobutyrate as a precursor was remarkably similar to that using propionate as a gluconeogenic precursor, the effects of alpha-ketobutyrate on the oxidative decarboxylation of pyruvate were qualitatively different from the effects of propionate on pyruvate metabolism.  相似文献   

7.
Pyruvate production by Torulopsis glabrata was used as a model to study the mechanism of product inhibition and the strategy for enhancing pyruvate production. It was found that the concentration of cell growth and pyruvate deceased with the increase of NaCl and sorbitol concentrations. To enhance the osmotic stress resistance of the strain, an NaCl-tolerant mutant RS23 was screened and selected through a pH-controlled continuous culture with 70 g/L NaCl as the selective criterion. Compared with the parent strain, mutant RS23 could grow well on the medium containing 70 g/L NaCl or 0.6 mol/L sorbitol. Pyruvate concentration by the mutant strain RS23 reached 94.3 g/L at 82 h (yield on glucose 0.635 g/g) in a 7-l fermentor with 150 g/L glucose as carbon source. Pyruvate concentration and yield of mutant RS23 were 41.1% and 11.1% higher than those of the parent strain, respectively. The strategy for enhancing pyruvate production by increasing osmotic stress resistance may provide an alternative approach to enhance organic acids production with yeast.  相似文献   

8.
Hepatocytes isolated from 48-hour, fasted guinea-pigs were incubated with glucose precursors to compare relative rates of glucose production. Glucose production from lactate and pyruvate was similar (2.61 vs 3.18 mumol/hr per 100 mg wet weight). Glucose production from fructose was greater than that from sorbitol (4.68 vs 1.63 mumol/hr per 100 mg wet weight). When ethanol was added to pyruvate-containing buffer, the flux of pyruvate to glucose and lactate was synergistically enhanced (5.28 vs 3.76 and 7.51 vs 2.88 mumol/hr per 100 mg wet weight, respectively). When sorbitol was added to buffer containing pyruvate, glucose and lactate production were even greater than that seen with ethanol (8.32 vs 5.38 and 15.99 vs 7.51 mumol/hr per 100 mg wet weight, respectively).  相似文献   

9.
The regulation of the gene expression of two important glycolytic enzymes, glucokinase and L-type pyruvate kinase, by hormones and carbohydrates was studied, in primary cultures of adult rat hepatocytes. Insulin caused time- and dose-dependent increases in the amounts of the mRNAs of the two enzymes in hepatocytes, although glucokinase responded to this hormone faster than L-type pyruvate kinase. The induction of glucokinase mRNA by insulin did not require the presence of glucose itself, but that of the L-type isozyme was dependent on the glucose concentration. For this effect, fructose and glycerol could partially substitute for glucose, but pyruvate and 2-deoxyglucose, a nonmetabolizable glucose analog, could not. The time course of insulin induction in the presence of fructose, but not of glycerol, was similar to that in the presence of glucose. In the presence of glycerol, the mRNA increased in a diphasic manner: the first increase, which probably reflected the effects of fructose and glycerol in normal liver, reached a maximum after 3 h, whereas the second increase corresponded to the increase in the presence of glucose. These results suggested that some metabolite of glucose was required for the insulin-induced increase in L-type pyruvate kinase mRNA. Cycloheximide inhibited the effects of insulin on the two mRNAs, suggesting that ongoing protein synthesis is required in both cases. The addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, an inhibitor of protein kinase C, also inhibited the effects of insulin. However, phorbol 12-myristate 13-acetate alone did not induce the two mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

11.
The effects of glucose, vitamins, and DO concentrations on efficient pyruvic acid fermentation were investigated using Torulopsis glabrata IFO 0005, and a novel biphasic culture method was developed on the basis of the metabolic flux analysis. T. glabrata requires the four vitamins nicotinic acid (NA), thiamine hydrochloride (B(1)), pyridoxine hydrochloride, and biotin for cell growth. The deficiency of these vitamins plays an essential role in pyruvate fermentation. In the present study, we considered the effects of the first two vitamins on the pyruvate fermentation. On the basis of several batch and fed-batch experiments, it was found that, as a result of glucose inhibition of cell growth, the initial glucose concentration should be around 30-40 g/L, and the glucose concentration during fermentation should be controlled at high level around 30 g/L. On the basis of an analysis of carbon flux distribution, a biphasic fermentation method was developed where the cultivation started with a high DO (at 40-50% of air saturation) for efficient cell growth and then was reduced to 5-10% for efficient pyruvate production. Since a fair amount of ethanol was formed when the DO concentration was decreased, the addition of NA turned out to be effective in reducing the ethanol formation. This may be due to a relaxing of the requirement for NADH oxidation by the alcohol dehydrogenase pathway. Since B(1) affects both the pyruvate dehydrogenase complex and pyruvate decarboxylase, its initial concentration must be carefully determined by considering both the cell growth and pyruvate production phases.  相似文献   

12.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

13.
1. Gluconeogenesis was studied in isolated avian hepatocytes. The highest rate of glucose production obtained was from lactate, followed by dihydroxyacetone, glyceraldehyde, and fructose. Alanine was converted to glucose at only about 4% the rate of lactate. 2. Addition of 10 mM sorbitol, xylitol, or ethanol to the hepatocytes increased glucose production from pyruvate 25-40%, while glycerol addition increased it only 9%. 3. Addition of beta-hydroxybutyrate had no effect on glucose production from lactate or pyruvate. 4. Addition of octanoate had no effect on glucose production from pyruvate, but depressed it from lactate at 5 mM. 5. Differences in the formation of glucose from various substrates suggest some basic differences in the mode of glucose production between the chick and the rat and guinea-pig.  相似文献   

14.
Lee SH  Woo HG  Baik EJ  Moon CH 《Life sciences》2000,68(1):57-67
The changes in vascular prostaglandin production are implicated in the derangement of vascular reactivity in diabetes. However, the mechanism of altered prostaglandin (PG) production in diabetes is largely unknown. In this study, we investigated the effect of high glucose on IL-1beta-induced PG production and the possible underlying mechanism in cultured vascular smooth muscle cell (VSMC). High glucose evoked an augmentation of IL-1beta-induced PG synthesis in a dose dependent manner and enhanced cyclooxygenase (COX) activity, which reached to maximum at 8-12 hours after stimulation. Western blot analysis supported the activity data. Protein kinase C (PKC) inhibitors, H-7 and chelerythrine, significantly inhibited the enhancement of IL-1beta-induced COX-2 expression by high glucose. The activation of PKC by PMA resulted in marked increase of PG production in low glucose group, whilst this was not the case in high glucose group. Furthermore, glucose-enhancing effect was significantly suppressed by zopolrestat, an aldose reductase inhibitor, and sodium pyruvate. These results suggest that the augmenting effect of high glucose on IL-1beta-induced PG production and COX-2 expression is, at least in part, due to increased glucose metabolism via sorbitol pathway following PKC activation.  相似文献   

15.
16.
Dietary iron deficiency in rats results in increased blood glucose turnover and recycling. We measured the rates of glucose production in isolated hepatocytes from iron-sufficient (Fe+) and iron-deficient (Fe-) rats to assess the intrinsic capacity of the Fe- liver to carry out gluconeogenesis. Low-iron and control diets were given to 21-day-old female rats. After 4-5 wk, hemoglobin concentrations averaged 4.1 g/dl in the Fe- and 14.3 g/dl in the Fe+ animals. In the hepatocytes from Fe- rats, there was a 35% decrease in the rate of glucose production from 1 mM pyruvate + 10 mM lactate, a 48% decrease from 0.1 mM pyruvate + 1 mM lactate, a 39% decrease from 1 mM alanine, and a 48% decrease from 1 mM glycerol. The addition of 5 microM norepinephrine or 0.5 microM glucagon to the incubation media produced stimulatory effects on hepatocytes from both Fe- and Fe+ rats, resulting in the maintenance of an average difference of 38% in the rates of gluconeogenesis between the two groups. Studies on isolated liver mitochondria and cytosol revealed alpha-glycerophosphate-cytochrome c reductase and phospho(enol)pyruvate carboxykinase activities to be decreased by 27% in Fe- rats. We conclude that because severe dietary iron deficiency decreases gluconeogenesis in isolated rat hepatocytes, the increased gluconeogenesis demonstrated by Fe- rats in vivo is attributable to increased availability of gluconeogenic substrates and upregulation of the pathway.  相似文献   

17.
1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-(14)C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-(14)C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [(3)H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25mum) stimulated DNA synthesis half-maximally, but maximum [(3)H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [(3)H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis.  相似文献   

18.
3- Aminopicolinate , a hyperglycemic agent that activates purified phosphoenolpyruvate carboxykinase in the presence of Fe2+, inhibits glucose synthesis from lactate, pyruvate, asparagine, monomethyl succinate, or glutamine but does not affect that from fructose, dihydroxyacetone, sorbitol, or glycerol in hepatocytes isolated from rats fasted for 24 h. Lactate production from monomethyl succinate by hepatocytes is also inhibited by 3- aminopicolinate . This compound elevates the concentrations of pyruvate, malate, and aspartate but decreases that of phosphoenolpyruvate in hepatocytes incubated with lactate plus pyruvate. In rats, the ability of 3- aminopicolinate to elevate blood glucose concentration is unimpaired by renalectomy . The drug does not significantly affect glycemia in functionally hepatectomized rats but accelerates blood lactate and pyruvate accumulation to higher maximum concentrations even when kidney function is also ablated. It is concluded that 3- aminopicolinate inhibits phosphoenolpyruvate carboxykinase in hepatocytes, that the reported stimulation of renal glutaminase and glutamine gluconeogenesis by this compound does not contribute significantly to its hyperglycemic property, and that the drug increases gluconeogenic substrate supply from peripheral tissues.  相似文献   

19.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

20.
1. Sodium dichloroacetate (1mM) inhibited glucose production from L-lactate in kidney-cortex slices from fed, starved or alloxan-diabetic rates. In general gluconeogenesis from other substrates was no inhibited. 2. Sodium dichloracetate inhibited glucose production from L-lactate but no from pyruvate in perfused isolated kidneys from normal or alloxan-diabetic rats. 3. Sodium dichloroacetate is an inhibitor of the pyruvate dehydrogenase kinase reaction and it effected conversion of pyruvate dehydrogenase into its its active (dephosphorylated) form in kidney in vivo. In general, pyruvate dehydrogenase was mainly in the active form in kidneys perfused or incubated with L-lactate and the inhibitory effect of dichloroacetate on glucose production was not dependent on activation of pyruvate dehydrogenase. 4. Balance data from kidney slices showed that dichloroacetate inhibits lactate uptake, glucose and pyruvate production from lactate, but no oxidation of lactate. 5. The mechanism of this effect of dichloroactetate on glucose production from lactate has not been fully defined, but evidence suggests that it may involve a fall in tissue pyruvate concentration and inhibition of pyruvate carboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号