首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Saccharomyces cerevisiae homologues of phosphotyrosyl phosphatase activator (PTPA) are encoded byRRD1 and RRD2, genes whose combined deletion is synthetic lethal. Previously we have shown that the lethality of rrd1,2delta can be suppressed by increasing the osmolarity of the medium. Here we show that the lethality of rrd1,2delta is also suppressed under oxygen-limited conditions. The absence of respiration per se is not responsible for the suppression since elimination of the mitochondrial genome or a block in heme biosynthesis fail to rescue the rrd1,2delta double mutation.  相似文献   

3.
4.
5.
Phosphotyrosyl phosphatase activator PTPA is a type 2A phosphatase regulatory protein that possesses an ability to stimulate the phosphotyrosyl phosphatase activity of PP2A in vitro. In yeast Saccharomyces cerevisiae, PTPA is encoded by two related genes, RRD1 and RRD2, whose products are 38 and 37% identical, respectively, to the mammalian PTPA. Inactivation of either gene renders yeast cells rapamycin resistant. In this study, we investigate the mechanism underling rapamycin resistance associated with inactivation of PTPA in yeast. We show that the yeast PTPA is an integral part of the Tap42-phosphatase complexes that act downstream of the Tor proteins, the target of rapamycin. We demonstrate a specific interaction of Rrd1 with the Tap42-Sit4 complex and that of Rrd2 with the Tap42-PP2Ac complex. A small portion of PTPA also is found to be associated with the AC dimeric core of PP2A, but the amount is significantly less than that associated with the Tap42-containing complexes. In addition, our results show that the association of PTPA with Tap42-phosphatase complexes is rapamycin sensitive, and importantly, that rapamycin treatment results in release of the PTPA-phosphatase dimer as a functional phosphatase unit.  相似文献   

6.
The Tor1p and Tor2p kinases, targets of the therapeutically important antibiotic rapamycin, function as components of two distinct protein complexes in yeast, termed TOR complex 1 (TORC1) and TORC2. TORC1 is responsible for a wide range of rapamycin-sensitive cellular activities and contains, in addition to Tor1p or Tor2p, two highly conserved proteins, Lst8p and Kog1p. By identifying proteins that co-purify with Tor1p, Tor2p, Lst8p, and Kog1p, we have characterized a comprehensive set of protein-protein interactions that define further the composition of TORC1 as well as TORC2. In particular, we have identified Tco89p (YPL180w) and Bit61p (YJL058c) as novel components of TORC1 and TORC2, respectively. Deletion of TOR1 or TCO89 results in two specific and distinct phenotypes, (i) rapamycin-hypersensitivity and (ii) decreased cellular integrity, both of which correlate with the presence of SSD1-d, an allele of SSD1 previously associated with defects in cellular integrity. Furthermore, we link Ssd1p to Tap42p, a component of the TOR pathway that is believed to act uniquely downstream of TORC1. Together, these results define a novel connection between TORC1 and Ssd1p-mediated maintenance of cellular integrity.  相似文献   

7.
As tools for studying adventitious organogenesis, three temperature-sensitive mutants of Arabidopsis thaliana, designated rrd1, rrd2, and rrd4, were isolated by screening with callus-mediated root redifferentiation from hypocotyl explants as an index phenotype. Phenotypes of these mutants were characterized with special regard to their tissue-culture responses. The obtained results suggest that the RRD1 and RRD2 genes participate in some fundamental processes required for active cell proliferation and that the RRD4 gene is involved in the acquisition step of competence for cell proliferation during callus initiation in hypocotyl explants.  相似文献   

8.
9.
10.
The target of rapamycin (TOR) kinase is an important regulator of growth in eukaryotic cells. In budding yeast, Tor1p and Tor2p function as part of two distinct protein complexes, TORC1 and TORC2, where TORC1 is specifically inhibited by the antibiotic rapamycin. Significant insight into TORC1 function has been obtained using rapamycin as a specific small molecule inhibitor of TOR activity. Here we show that caffeine acts as a distinct and novel small molecule inhibitor of TORC1: (i) deleting components specific to TORC1 but not TORC2 renders cells hypersensitive to caffeine; (ii) rapamycin and caffeine display remarkably similar effects on global gene expression; and (iii) mutations were isolated in Tor1p, a component specific to TORC1, that confers significant caffeine resistance both in vivo and in vitro. Strongest resistance requires two simultaneous mutations in TOR1, the first at either one of two highly conserved positions within the FRB (rapamycin binding) domain and a second at a highly conserved position within the ATP binding pocket of the kinase domain. Biochemical and genetic analyses of these mutant forms of Tor1p support a model wherein functional interactions between the FRB and kinase domains, as well as between the FRB domain and the TORC1 component Kog1p, regulate TOR activity as well as contribute to the mechanism of caffeine resistance.  相似文献   

11.
12.
13.
14.
Gadura N  Robinson LC  Michels CA 《Genetics》2006,172(3):1427-1439
The Saccharomyces casein kinase 1 isoforms encoded by the essential gene pair YCK1 and YCK2 control cell growth and morphogenesis and are linked to the endocytosis of several membrane proteins. Here we define roles for the Yck1,2 kinases in Mal61p maltose permease activation and trafficking, using a yck1delta yck2-2(ts) (yck(ts)) strain with conditional Yck activity. Moreover, we provide evidence that Glc7-Reg1 phosphatase acts as an upstream activator of Yck1,2 kinases in a novel signaling pathway that modulates kinase activity in response to carbon source availability. The yck(ts) strain exhibits significantly reduced maltose transport activity despite apparently normal levels and cell surface localization of maltose permease protein. Glucose-induced internalization and rapid loss of maltose transport activity of Mal61/HAp-GFP are not observed in the yck(ts) strain and maltose permease proteolysis is blocked. We show that a reg1delta mutant exhibits a phenotype remarkably similar to that conferred by yck(ts). The reg1delta phenotype is not enhanced in the yck(ts) reg1delta double mutant and is suppressed by increased Yck1,2p dosage. Further, although Yck2p localization and abundance do not change in the reg1delta mutant, Yck1,2 kinase activity, as assayed by glucose-induced HXT1 expression and Mth1 repressor stability, is substantially reduced in the reg1delta strain.  相似文献   

15.
Functional homologs of fungal metallothionein genes from Arabidopsis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Metallothioneins (MTs) are cysteine-rich proteins required for heavy metal tolerance in animals and fungi. Two cDNAs encoding proteins with homology to animal and fungal MTs have been isolated from Arabidopsis. The genes represented by these cDNAs are referred to as MT1 and MT2. When expressed in an MT-deficient (cup1 delta) mutant of yeast, both MT1 and MT2 complemented the cup1 delta mutation, providing a high level of resistance to CuSO4 and moderate resistance to CdSO4. Although the MT-deficient yeast was not viable in the presence of either 300 microM CuSO4 or 5 microM CdSO4, cells expressing MT1 were able to grow in medium supplemented with 3 mM CuSO4 and 10 microM CdSO4, and those expressing MT2 grew in the presence of 3 mM CuSO4 and 100 microM CdSO4. In plants, MT1 mRNA was more abundant in roots and dark-grown seedlings than in leaves. In contrast, MT2 mRNA accumulated more in leaves than in either roots or darkgrown seedlings. MT2 mRNA was strongly induced in seedlings by CuSO4, but only slightly by CdSO4 or ZnSO4. However, MT1 mRNA was induced by CuSO4 in excised leaves that were submerged in medium. These results indicated that Arabidopsis MT genes are involved in copper tolerance. Plants also synthesized metal binding phytochelatins (poly[gamma-glutamylcysteine]glycine) when exposed to heavy metals. The results presented here argue against the hypothesis that phytochelatins are the sole molecules involved in heavy metal tolerance in plants. We conclude that Arabidopsis MT1 and MT2 are functional homologs of yeast MT.  相似文献   

16.
The products of the Saccharomyces cerevisiae CIN1, CIN2 and CIN4 genes participate in a nonessential pathway required for normal microtubule function. In this article, we demonstrate that the product of PAC2 also functions in this pathway. PAC2 deletion mutants displayed phenotypes and genetic interactions similar to those caused by cin1Δ, cin2Δ and cin4Δ. These include cold-sensitive microtubule structures and sensitivity to the microtubule depolymerizing agent benomyl. Involvement in a common functional pathway is indicated by the observation that all double mutant combinations are viable and no more affected than any single mutant. In addition, extra copies of CIN1 were found to suppress the benomyl sensitivity of pac2Δ, cin2Δ and cin4Δ, but not that caused by other mutations that affect microtubule function. Cin1p and Pac2p were found to be related in sequence to mammalian proteins that aid in the folding of β-tubulin into an assembly-competent state. Alleles of CIN1 were identified that could suppress the benomyl sensitivity of cin4-4 in a highly specific fashion. Our findings suggest that the guanine nucleotide-binding Cin4p interacts with Cin1p and regulates its tubulin folding activity.  相似文献   

17.
The YBR159w gene encodes the major 3-ketoreductase activity of the elongase system of enzymes required for very long-chain fatty acid (VLCFA) synthesis. Mutants lacking the YBR159w gene display many of the phenotypes that have previously been described for mutants with defects in fatty acid elongation. These phenotypes include reduced VLCFA synthesis, accumulation of high levels of dihydrosphingosine and phytosphingosine, and accumulation of medium-chain ceramides. In vitro elongation assays confirm that the ybr159Delta mutant is deficient in the reduction of the 3-ketoacyl intermediates of fatty acid elongation. The ybr159Delta mutant also displays reduced dehydration of the 3-OH acyl intermediates of fatty acid elongation, suggesting that Ybr159p is required for the stability or function of the dehydratase activity of the elongase system. Green fluorescent protein-tagged Ybr159p co-localizes and co-immunoprecipitates with other elongating enzymes, Elo3p and Tsc13p. Whereas VLCFA synthesis is essential for viability, the ybr159Delta mutant cells are viable (albeit very slowly growing) and do synthesize some VLCFA. This suggested that a functional ortholog of Ybr159p exists that is responsible for the residual 3-ketoreductase activity. By disrupting the orthologs of Ybr159w in the ybr159Delta mutant we found that the ybr159Deltaayr1Delta double mutant was inviable, suggesting that Ayr1p is responsible for the residual 3-ketoreductase activity.  相似文献   

18.
The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for yeast cell growth. Loss of PKC1 function results in cell lysis due to an inability to remodel the cell wall properly during growth. The PKC1 gene has been proposed to regulate a bifurcated pathway, on one branch of which function four putative protein kinases that catalyze a linear cascade of protein phosphorylation culminating in the activation of the mitogen-activated protein kinase homolog, Mpk1p. Here we describe two genes whose overexpression suppress both an mpk1 delta mutation and a pkc1 delta mutation. One of these genes is identical to the previously identified PPZ2 gene. The PPZ2 gene is predicted to encode a type 1-related protein phosphatase and is functionally redundant with a closely related gene, designated PPZ1. Deletion of both PPZ1 and PPZ2 resulted in a temperature-dependent cell lysis defect similar to that observed for bck1 delta, mkk1,2 delta, or mpk1 delta mutants. However, ppz1,2 delta mpk1 delta triple mutants displayed a cell lysis defect at all temperatures. The additivity of the ppz1,2 delta defect with the mpk1 delta defect, combined with the results of genetic epistasis experiments, suggested either that the PPZ1- and PPZ2-encoded protein phosphatases function on a branch of the PKC1-mediated pathway different from that defined by the protein kinases or that they play an auxiliary role in the pathway. The other suppressor gene, designated BCK2 (for bypass of C kinase), is predicted to encode a 92-kDa protein that is rich in serine and threonine residues. Genetic interactions between BCK2 and other pathway components suggested that BCK2 functions on a common pathway branch with PPZ1 and PPZ2.  相似文献   

19.
20.
The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号