首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The oligomeric dicyclohexylcarbodiimide (DCCD)-binding protein of mitochondrial ATPase was studied using (a) the relationship between [14C]DCCD binding and inhibition of ATPase activities and (b) the analysis of the kinetics of inhibition. 2. The [14C]DCCD binding to bovine heart mitochondria is linearly proportional to the inhibition of ATP hydrolysis up to a 50% decrease of the original activity resulting in 0.6 mol DCCD bound covalently to the specific inhibitory site (Hous?t?k, J., Svoboda, P., Kopecký, J., Kuz?ela, S?. and Drahota, Z. (1981) Biochim. Biophys. Acta 634, 331–339) per mol of the fully inhibited enzyme. 3. Kinetics of the inhibition of both the ATPase activity (heart and liver mitochondria) and ADP-stimulated respiration (liver) reveal that 1 mol DCCD per mol ATPase eliminates both the synthetic and the hydrolytic activities. It is inferred that the activity-binding correlation underestimates the number of DCCD-reactive sites. 4. The second-order rate constant of the DCCD-ATPase interaction (k) is inversely related to the concentration of membranes, indicating that DCCD reaches the inhibitory site by concentrating in the hydrophobic (phospholipid) environment. 5. At a given concentration of liver mitochondria, comparable k values are obtained both for the inhibition of ATP hydrolysis (k=5.35·102M?1·min?1) and ADP-stimulated respiration (k=5.67·102M?1·min?1). 6. It is concluded that both the synthetic and the hydrolytic functions of ATPase are inhibited via a common single DCCD-reactive site. This site is represented by one of the several polypeptide chains forming the oligomer of the DCCD-binding protein. The inhibitor-ATPase interaction does not exhibit cooperativity, indicating that the preferential reactivity towards DCCD is an inherent property of the inhibitory site.  相似文献   

2.
—(1) The properties of a preparation of functional intact rat brain mitochondria are described and the resulting fraction is enzymatically characterized. (2) These mitochondria are able to accumulate Ca2+ in a respiration-dependent reaction without additions of Pi and/or adenine nucleotides. (3) As criteria the increased acidity of the incubation medium accompanying the energy-dependent Ca2+ accumulation, its inhibition by rotenon and Antimycin A, the acceleration of respiration and the redox change of the pyridine nucleotides were recorded and Ca2+ accumulation by the mitochondria was determined by complexemetric methods. (4) The maximum Ca2+ accumulation by rat brain mitochondria amounts to only 25 per cent of that by rat liver mitochondria under similar conditions (on the base per mg protein); after addition of 1 mm -ADP (without Pi) the comparable value was about 50 per cent.  相似文献   

3.
In the presence of oligomycin ADP inhibits the osmotic swelling of the nonenergized rat liver mitochondria in the NH4NO3 medium. With the energized mitochondria ADP enhances contraction of the mitochondria swollen in the NH4NO3 medium. Carboxyatractyloside and atractyloside abolish or prevent the effects of ADP. The direct measurements of the proton conductance of rat liver mitochondria shows that the inhibitory action of ADP + oligomycin on the H+ permeability does not depend on the energization of mitochondria. In these experiments the local anesthetic nupercaine and ADP additively inhibit the inner membrane conductance for protons, but carboxyatractyloside abolishes only the effect of ADP. In the presence of oligomycin ADP also inhibits the osmotic swelling of the nonenergized liver mitochondria in the KNO3 medium, and the energy-dependent swelling of rat liver mitochondria in the medium with K+ ions and Pi. The inhibition by ADP of the membrane passive permeability for K+ is also sensitive to carboxyatractyloside. It is concluded that rat liver mitochondria possess an ADP-regulated channel for H+ and K+. The properties of this pathway for protons and potassium ions favor the idea that ADP regulates the mitochondrial permeability via adenine nucleotide translocase. It is assumed that the adenine nucleotides carrier should operate according to the “gated pore” mechanism.  相似文献   

4.
K+ transport into mitoplasts, prepared by digitonin disruption and removal of the outer membranes from rat liver mitochondria, has been studied. Unidirectional K+ influx has been measured by means of 42K, in the presence of the respiratory substrate succinate. K+ influx is inhibited by CN?, antimycin A and dicyclohexylcarbodiimide, but is insensitive to oligomycin. A linear dependence of the reciprocal of the K+-influx rate on the reciprocal of the external K+ concentration is observed. Under the conditions studied, the apparent Km for K+ of the transport mechanism is approx. 6 mM, while the Vmax of K+ influx is approx. 5 μ mol K+/g protein per min. The rate of K+ influx increases with increasing external pH over the range from 6.8 to 8.0. The observed kinetics, pH dependence and inhibitor sensitivity are essentially similar to previously reported characteristics of K+ transport into intact rat liver mitochondria. It is concluded that the outer mitochondrial membrane does not have a role in controlling K+ flux into rat liver mitochondria.  相似文献   

5.
N.-E.L. Saris  P. Bernardi 《BBA》1983,725(1):19-24
The effect of Sr2+ on the set point for external Ca2+ was studied in rat heart and liver mitochondria with the aid of a Ca2+-sensitive electrode. In respiring mitochondria the set point is determined by the rates of Ca2+ influx on the Ca2+ uniporter and efflux by various mechanisms. We studied the Ca2+-Na+ exchange pathway in heart mitochondria and the Δψ-modulated efflux pathway in liver mitochondria. Prior accumulation of Sr2+ was found to shift the set points towards lower external Ca2+ both in heart mitochondria under conditions of Ca2+-Na+ exchange and in liver mitochondria under conditions that should promote opening of the Δψ-modulated pathway. The effect on the set point was found to be due to inhibition of Ca2+ efflux by Sr2+ taken up by the mitochondria, while Sr2+ efflux was too slow to be measurable.  相似文献   

6.
Summary Rapid uptake of Ba2+ by respiring rat liver mitochondria is accompanied by a transient stimulation of respiration. Following accumulation of Ba2+, e.g. at a concentration of 120 nmol per mg protein, the mitochondria exhibit reduced rates of state 3 and uncoupler-stimulated respiration. ADP-stimulated respiration is inhibited at a lower concentration of Ba2+ than is required to affect uncoupler-stimulated respiration, suggesting a distinct effect of Ba2+ on mechanisms involved in synthesis of ATP. Ba2+, which has an ionic radius similar to that of K+, inhibits unidirectional K+ flux into respiring rat liver mitochondria. This effect on K+ influx is observable at concentrations of Ba2+, e.g. 23 to 37 nmol per mg protein, which cause no significant change in state 4 or uncoupler-stimulated respiration. The accumulated Ba2+ decreases the measuredV max of K+ influx, while having little effect on the apparentK m for K+. The inhibition of K+ influx by Ba2+ is seen in the presence and absence of mersalyl, an activator of K+ influx. In contrast, under the conditions studied, Ba2+ has no apparent effet on the rate of unidirectional K+ efflux. These data are consistent with the idea that K+ may enter and leave mitochondria via spearate mechanisms.  相似文献   

7.
It was earlier shown that the calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 resulted in the Tl+-induced mitochondrial permeability transition pore (MPTP) opening in the inner membrane. This opening was accompanied by an increase in swelling and membrane potential dissipation and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration. This respiratory decrease was markedly leveled by mersalyl (MSL), the phosphate symporter (PiC) inhibitor which poorly stimulated the calcium-induced swelling, but further increased the potential dissipation. All of these effects of Ca2+ and MSL were visibly reduced in the presence of the MPTP inhibitors (ADP, N-ethylmaleimide, and cyclosporine A). High MSL concentrations attenuated the ability of ADP to inhibit the MPTP. Our data suggest that the PiC can participate in the Tl+-induced MPTP opening in the inner membrane of Ca2+-loaded rat liver mitochondria.  相似文献   

8.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1983,723(2):150-159
Interaction of N,N′-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30–65% inactivation over a concentration range of 5–50 μM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5·105 M?1·min?1. The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

9.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

10.
THE RELATIVE SIGNIFICANCE OF CO2-FIXING ENZYMES IN THE METABOLISM OF RAT BRAIN   总被引:10,自引:10,他引:0  
To evaluate the relative significance of CO2-fixing enzymes in the metabolism of rat brain, the subcellular distribution of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase, as well as the fixation of H14CO3? by the cytosol and the mitochondria was investigated. Pyruvate carboxylase and phosphoenol-pyruvate carboxykinase are mainly localized in the mitochondria whereas NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase are present in both the cytosol and the mitochondria. In the presence of pyruvate rat brain mitochondria fixed H14CO3? at a rate of about 170 nmol/g of tissue/min whereas these organelles fixed negligible amounts of H14CO3? in the presence of α-ketoglutarate or phosphoenolpyruvate. Rat brain cortex slices fixed H14CO3? at a rate of about 7 nmol/g of tissue/min and it was increased by two-fold when pyruvate was added to the incubation medium. The carboxylation of α-ketoglutarate and pyruvate by the reversal of the cytosolic NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase respectively was very low as compared to that by pyruvate carboxylase. The rate of carboxylation reaction of both NADP-isocitrate dehydrogenase and NADP-malate dehydrogenase was only about 1/10th of that of decarboxylation reaction of the same enzyme. It is suggested that under physiological conditions these two enzymes do not play a significant role in CO2-fixation in the brain. In rat brain cytosol, citrate is largely metabolized to α-ketoglutarate by a sequential action of aconitate hydratase and NADP-isocitrate dehydrogenase. The operation of the citrate-cleavage pathway in rat brain cytosol is demonstrated. The data show that among four CO2-fixing enzymes, pyruvate carboxylase, an anaplerotic enzyme, plays the major role in CO2-fixation in the brain.  相似文献   

11.
D.L. Clough 《Life sciences》1984,35(19):1937-1946
Vanadate (VO4?3) produces a positive inotropic effect in rats and also promotes diuresis as well as natriuresis. Although the mechanism(s) of these effects is uncertain, in the kidney, VO4?3 may act through inhibition of (Na++K+)-ATPase activity, whereas in the heart, other or additional mechanisms are likely. Under the assay conditions used in the present study, microsomal (Na++K+)-ATPase activities from rat kidney cortex and medulla were inhibited to a greater extent than was left ventricular (Na++K+)-ATPase activity over a range of VO4?3 concentrations. The apparent dissociation constant for left ventricular (Na++K+)-ATPase (10.95 ± 1.26 × 10?7M VO4?3) was significantly greater than that of (Na++K+)-ATPase from the cortex (3.46±0.96×10?7 M VO4?3) or the medulla (3.32±0.7×10?7M VO4?3, N=6, P<.05) whereas there were no significant differences between the effects of VO4?3 on (Na++K+)-ATPase from the cortex and medulla. The greater inhibition by VO4, of (Na++K+)-ATPase from the cortex relative to that of the left ventricle, occurred over a range of Na+ and K+ concentrations, and K+ enhanced the inhibition by VO4?3 to a greater extent for (Na++K+)-ATPase from the cortex than the left ventricle. These results suggest that renal (Na++K+)-ATPase is more sensitive than left ventricular (Na++K+)-ATPase to inhibition by VO4?3 and would, therefore, be more likely to be modulated invivo.  相似文献   

12.
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentK m for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide.  相似文献   

13.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

14.
Ca2+ stimulates the binding of a variety of prostaglandins (PG) to liver mitochondria. Optimal binding is observed at slightly acidic pH and at concentrations of Ca2+ between 200 and 500 μm. The stimulation of the binding requires the active transport of Ca2+ in mitochondria and is only observed in the absence of permeant anions. The maximal amount of PG bound is about 3 nmol/mg of mitochondrial protein. All PG tested induce efflux of the Ca2+ taken up by mitochondria without impairing the ability of mitochondria to actively accumulate it. Optimal stimulation of the efflux of Ca2+ requires concentrations of PG higher than those used in the PG-binding experiments and is associated with an evident uncoupling of the respiration that follows a Ca2+-induced O2 uptake jump. The “uncoupling” by PG is explained by postulating the entrance of protonated PG into mitochondria, followed by their exit from the organelle as 2:1 complexes with Ca2+.  相似文献   

15.
16.
17.
Isolated mussel mitochondria produced a less pronounced transient stimulation of respiration upon the addition of Ca2+ in a reaction medium containing Pi and a slower rate of Ca2+ transport compared to rat liver mitochondria. The initial rates of Ca2+ transport in the absence of Pi were more similar and both types of mitochondria possessed a sigmoidal relationship between the initial rate of Ca2+ transport and the free Ca2+ concentration (‘Km’ ? 5μM). Ruthenium red produced an equal maximal inhibition of the initial rate of Ca2+ transport in both types of mitochondria but mussel mitochondria were rather more resistant to the inhibitor. The major difference found was that approximately 15 nmoles La3+ mg protein?1 was required to produce maximal inhibition of the initial rate of Ca2+ transport in mussel mitochondria compared to approximately 1.0 nmole La3+ mg protein?1 in rat liver mitochondria. It is concluded that mussel mitochondria possess a comparable Ca2+ transporter to vertebrate mitochondria and possible reasons for resistance to La3+ are discussed.  相似文献   

18.
The dithiol-reactive reagent phenylarsine oxide causes a pH-dependent stimulation of unidirectional K+ flux into respiring rat liver mitochondria. This stimulation is diminished by subsequent addition of either the dithiol 2,3-dimercaptopropanol or the monothiol 2-mercaptoethanol. In contrast, uncoupling by phenylarsine oxide is reversed by 2,3-dimercaptopropanol but not by 2-mercaptoethanol. The data suggest separate sites of interaction of phenylarsine oxide with mechanisms of K+ entry and ATP synthesis. Stimulatory effects of mersalyl and phenylarsine oxide on K+ influx are not additive. Thus PheASO and mersalyl may affect K+ influx at a common site. Pretreatment of the mitochondria with DCCD, which inhibits K+ influx, fails to alter sensitivity to PheAsO or mersalyl. Thus the DCCD binding site associated with the K+ influx mechanism appears to be separate from and independent of the sulfhydryl group(s) which mediate stimulation of K+ influx by PheAsO and mersalyl.PheAsO, like mersalyl, also increases the rate of unidirectional K+ efflux from respiring mitochondria. The combined presence of PheAsO plus mersalyl causes a greater stimulation of K+ efflux than is observed with either reagent alone.Abbreviations used: BAL, British AntilLewisite or 2,3-dimercaptopropanol; DCCD, dicyclohexylcarbodiimide; DBCT, dibutylchloromethyltin chloride; 2-ME, 2-mercaptoethanol; PheAsO, phenylarsine oxide.  相似文献   

19.
A quantitative study of H+, K+, Sr2+ and succinate fluxes in Sr2+-induced oscillatory state of rat liver mitochondria is presented. It was shown that oscillation of succinate content in mitochondria occurs synchronously with oscillations of the cation fluxes. Total charge transferred across the membrane by the registered cations and the succinate-anion is equal to zero. Passive H+-influx has been calculated at all stages of the oscillatory cycle. The conclusion is made that electroneutral 2 H+/Sr2+ exchange is periodically induced in mitochondria. A value of (2 ± 0.2) · 10-7 mol Sr2+/min per mg protein. has been determined for Sr2+ by this type of exchange.  相似文献   

20.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 lnδ-(ngatom)H+s and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号