首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picosecond and nanosecond spectroscopic techniques have been used to study the primary electron transfer processes in reaction centers isolated from the photosynthetic bacterium Rhodopseudomonas viridis. Following flash excitation, the first excited singlet state (P1) of the bacteriochlorophyll complex (P) transfers an electron to an intermediate acceptor (I) in less than 20 ps. The radical pair state (P+I?) subsequently transfers an electron to another acceptor (X) in about 230 ps. There is an additional step of unknown significance exhibiting 35 ps kinetics. P+ subsequently extracts an electron from a cytochrome, with a time constant of about 270 ns. At low redox potential (X reduced before the flash), the state P+I? (or PF) lives approx. 15 ns. It decays, in part, into a longer lived state (PR), which appears to be a triplet state. State PR decays with an exponential time of approx. 55 μs. After continuous illumination at low redox potential (I and X both reduced), excitation with an 8-ps flash produces absorption changes reflecting the formation of the first excited singlet state, P1. Most of P1 then decays with a time constant of 20 ps. The spectra of the absorbance changes associated with the conversion of P to P1 or P+ support the view that P involves two or more interacting bacteriochlorophylls. The absorbance changes associated with the reduction of I to I? suggest that I is a bacteriopheophytin interacting strongly with one or more bacteriochlorophylls in the reaction center.  相似文献   

2.
A new ruthenium nitric oxide complex with the bidentate phosphine, 1,2-bis(diethylphosphino)ethane (depe), has been synthesized and characterized by UV-Vis, infrared, EPR, NMR, electrochemical techniques and X-ray structure determination. The electronic spectrum showed a typical band of dπ→pπ* charge-transfer (CT) transition, assigned to Ru(II)NO transition, and the vibrational spectrum exhibited a peak of nitrosyl ligand at (νNO=1851 cm−1). A model structure for this complex has been proposed based on 1H, 1H{31P}, 31P{1H}, 13C{1H}, COSY 1H1H{31P}, J-Resolved, HSQC, HMBC, HSQC 1H13C{31P} and 1H13C HSQC/1H1H TOCSY spectral data, and confirmed by X-ray diffraction. The nitrosonium character for the NO ligand become evident through both electron paramagnetic resonance and X-ray data (angle RuNO=177.4(3)°). The reversible monoeletronic process at E1/2=0.040 V versus SHE was assigned to the ligand NO+/NO redox couple. Under treatment with Cd(Hg) solutions containing the [Ru(NO)(depe)2Cl](PF6)2 yields a signal in the EPR spectrum (g=1.99 and g//=1.88) which fitted quite well with the simulated spectra of coordinated NO species.  相似文献   

3.
We propose the use of Lee-Goldburg decoupling in high-resolution natural abundance 13C CP-MAS NMR spectroscopy to obtain J-resolved multiplets from membrane lipids, and the use of these in spectral assignment and to investigate changes in molecular and segmental dynamics within chemical shift-resolved lipid groups. Spectroscopic characteristics of hydrated DPPC bilayers are reported, including J1CH-couplings from the liquid crystalline and gel phases. The observed J1θCH values are scaled in the Lee-Goldburg experiment by a factor of approximately 3−1/2 and corrected J1CH values on the order of 150 Hz compare well with indirect measurements. The J-resolved multiplets show J1θCH-couplings from the chain region to be approximately 20% lower than couplings determined from the headgroup, with backbone values falling between the two. Sensitivity of Lee-Goldburg decoupling to molecular motions reveals changes in hydrocarbon chain and backbone segmental dynamics across the main phospholipid transition and reduction in headgroup mobility below the pre-transition.  相似文献   

4.
We measured the kinetics of light-induced NADPH formation and subsequent dark consumption by monitoring in vivo its fluorescence in the cyanobacterium Synechocystis PCC 6803. Spectral data allowed the signal changes to be attributed to NAD(P)H and signal linearity vs the chlorophyll concentration was shown to be recoverable after appropriate correction. Parameters associated to reduction of NADP+ to NADPH by ferredoxin–NADP+-oxidoreductase were determined: After single excitation of photosystem I, half of the signal rise is observed in 8 ms; Evidence for a kinetic limitation which is attributed to an enzyme bottleneck is provided; After two closely separated saturating flashes eliciting two photosystem I turnovers in less than 2 ms, more than 50% of the cytoplasmic photoreductants (reduced ferredoxin and photosystem I acceptors) are diverted from NADPH formation by competing processes. Signal quantitation in absolute NADPH concentrations was performed by adding exogenous NADPH to the cell suspensions and by estimating the enhancement factor of in vivo fluorescence (between 2 and 4). The size of the visible (light-dependent) NADP (NADP+ + NADPH) pool was measured to be between 1.4 and 4 times the photosystem I concentration. A quantitative discrepancy is found between net oxygen evolution and NADPH consumption by the light-activated Calvin–Benson cycle. The present study shows that NADPH fluorescence is an efficient probe for studying in vivo the energetic metabolism of cyanobacteria which can be used for assessing multiple phenomena occurring over different time scales.  相似文献   

5.
FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings.  相似文献   

6.
Incorporations of singly and doubly-labelled acetate-[13C] into griseofulvin by a mutant strain of Penicillium patulum confirm its origin from simple folding of a single heptaketide chain. An acetate ‘starter’ effect is observed in the 13C-NMR spectra of griseofulvin enriched from acetate-[13C], and analysis of the 13C—13C spin—spin couplings observed indicate a rapid metabolic turnover of added acetate. Methyl, but not carboxyl, of acetate is efficiently metabolised into the C1 pool.  相似文献   

7.
The endogenous cation in peroxidases may contribute to the type of heme coordination. Here a series of ferric and ferrous derivatives of wild-type Leishmania major peroxidase (LmP) and of engineered K+ site mutants of LmP, lacking potassium cation binding site, has been examined by electronic absorption spectroscopy at 25 °C. Using UV–visible spectrophotometry, we show that the removal of K+ binding site causes substantial changes in spin states of both the ferric and ferrous forms. The spectral changes are interpreted to be, most likely, due to the formation of a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH 7.0. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I were not observed in the K+ site double mutants in the presence of H2O2. Similarly electron donor oxidation rate was two orders less for the K+ site double mutants compared to the wild type. These data show that K+ functions in preserving the protein structure in the heme surroundings as well as the spin state of the heme iron, in favor of the enzymatically active form of LmP.  相似文献   

8.
In this paper, we report on luminescence and absorbance effects of Er+3:Au-doped tellurite glasses synthesized by a melting-quenching and heat treatment technique. After annealing times of 2.5, 5.0, 7.5, and 10.0 h, at 300 °C, the gold nanoparticles (GNP) effects on the Er+3 are verified from luminescence spectra and the corresponding levels lifetime. The localized surface plasmon resonance around 800 nm produced a maximum fluorescence enhancement for the band ranging from 800 to 840 nm, corresponding to the transitions 4H11/2 → 4I13/2 (805 nm) and 4S3/2 → 4I13/2 (840 nm), with annealing time till 7.5 h. The measured lifetime of the levels 4H11/2 and 4S3/2 confirmed the lifetime reduction due to the energy transfer from the GNP to Er+3, causing an enhanced photon emission rate in these levels.  相似文献   

9.
A reaction-center pigment-protein complex of the green bacterium Prosthecochloris aestuarii was studied by means of nanosecond-flash spectroscopy. In this complex electron transfer between the primary and secondary acceptor is blocked. The spectra and kinetics of the absorption changes induced by a short flash indicated the formation of the radical pair P-840+I?, which decayed in 20–35 ns, mainly to the triplet state of the primary electron donor P-840. The absorption difference spectrum of the initial absorption change indicated that the primary acceptor I is either bacteriopheophytin c or another pigment with absorption maximum at 665 nm.  相似文献   

10.
The dynamics of Na+, K+, and proline accumulation in various organs of non nodulated Vigna sinensis and Phaseolus aureus was followed during their acclimation to two levels of salinities for a period of 35 days and was correlated to the vegetative growth of the two species. The rate of Na+ and K+ absorption is at a maximum during the first 15 to 20 days of culture. K+ absorption is not completely inhibited even at 100 mM NaCl although the endogenous Na+ largely surpasses that of K+ in certain organs. Low salinity rather accelerates K+ absorption in both species. The relative growth rates (RGR) correlate with the rate of Na+ and K+ accumulation. At low salinity (10 mM NaCl), the RGR of V. sinensis is greater than that of P. aureus. However, at high salinity (100 mM NaCl) the RGR is the same for both species. The growth of the younger parts of the two species is not arrested by salt treatment. Very high accumulation of Na+ is avoided in organs with less vacuolated tissues. At no time does the endogenous K : Na ratio in these organs fall below 1.0. Certain organs, especially the roots, hypocotyls, and the lower parts of the stems are capable of storing large quantities of Na+. In V. sinensis, the accumulated Na+ and K+ are evenly distributed among the various organs while in P. aureus they are rather concentrated in the roots. External salinity creates water deficiency in the younger plant parts and as a consequence, proline accumulates especially in the youngest aerial organs - more in P. aureus than in V. sinensis. The accumulation of this amino acid in both the species is dependent on time and correlates directly, not only with the water deficit, but also with the K+ contents. In contrast, it does not seem to depend directly on the endogenous Na+ content. The relative salt tolerance of the two species and the possible role of K+, Na+ and proline in the osmotic adjustments of the two species under saline conditions are discussed.  相似文献   

11.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   

12.
The major glycolipid sulfate of the extreme halophile Halobacterium salinarium was isolated and characterised mainly by mass spectrometry and NMR spectroscopy. The mass spectrum of the permethylated, desulfated and trimethylsilylated derivative showed the molecule to be a trihexosyl glycerol C20-diether with the sulfate group on the terminal hexose. A 3-position of the sulfate was indicated by the mass spectrum obtained after acetylation and trimethylsilylation (solvolysis of sulfate and replacement by a trimethylsilyl group). The NMR spectrum of the desulfated permethylated glycolipid gave conclusive evidence for the presence of one β and two α anomeric protons. With the knowledge of degradation data it was possible to assign the β signal to galactose (terminal hexone), and the α signals to glucose and mannose. These data together make it likely that the glycolipid sulfate is identical in structure with the glycolipid from Halobacterium cutirubrum characterised previously (M. Kates and P.W. Deroo, J. Lipid Res., 14 (1973) 438).On the basis of a suggested function of cerebroside sulfate of animal origin (identical polar end with the bacterial glycolipid: β-galactopyranose-3-sulfate) and the present knowledge of ion transport in Halobacteria, it is proposed that the bacterial glycolipid may function as a selective K+ receptor for the K+ transport from a high-Na+ and low-K+ outside medium.  相似文献   

13.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH2) through the cytochrome b6f complex (Cyt b6f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700+ and PC+ was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC+ and P700+ components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b6f to the PSI donors. A significant down-regulation of Cyt b6f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b6f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

14.
John Biggins 《BBA》1978,504(2):288-297
The photoinduced turnover of P-700 (the reaction center chlorophyll a of photosystem I) in higher plant thylakoids was examined at room temperature by observation of the kinetics and amplitude of the transmission signal at 700 nm. The concentration of P-700 functional in cyclic and non-cyclic electron transfer reactions was compared. For the cyclic reactions mediated by N-methylphenazonium-p-methosulfate, 2,3,5,6-tetramethylphenylenediamine, 2,6-dichlorophenolindophenol and N,N,N′,N′-tetramethylphenylenediamine and non-cyclic reactions utilizing either methylviologen or NADP+ as acceptor, the illuminated steady-state concentration of P-700+ was shown to be similar. The data support the concept of a homogeneous pool of P-700 that is capable of interaction in both cyclic and non-cyclic electron transfer reactions and are consistent with previous data obtained in vivo.The amplitude and kinetics of the P-700 signal were found to be very dependent upon the composition of the reaction medium and differences were noted for turnover in the cyclic and non-cyclic reactions. Specifically, at white light saturation, the addition of low concentrations of divalent cations, such as Mg2+ or Ca2+, had no effect on the signal amplitude during the cyclic reactions, but, in confirmation of previous work, caused an attenuation of the signal amplitude during non-cyclic flow. At low light intensities, the divalent cations caused a similar reduction in redox level of P-700 in the steady-state during non-cyclic flow and also reduced the rate of P-700 photooxidation in the cyclic reactions. The concentration of divalent cation that reduced the signal amplitude of P-700+ during non-cyclic flow was compared with that required for the stimulation of the variable component of fluorescence, and it was shown to be similar with half maximal effects at 1 mM Mg2+. The observations confirm that divalent cations control non-cyclic electron transport by an activation of Photosystem II in addition to regulating the distribution of excitation energy between the two photosystems.  相似文献   

15.
We have previously described a transient high spin ferric heme species in cytochrome c oxidase (EC 1.9.3.1) which represents a3+3 (Beinert, H. and Shaw, R.W. (1977) Biochim. Biophys. Acta 462, 121–130), and can be detected and quantitatively determined by EPR. We have now used our ability to generate this species to study reactions of a3+3 with substrates and ligands and also responses to pH changes. This was accomplished by multiple rapid mixing and freezing techniques in conjunction with low temperature EPR and optical reflectance spectroscopies. The substrates used were O2 and ferrocytochrome c and the ligands cyanide, sulfide, azide and carbon monoxide. Contrary to the oxidized, resting form of the enzyme, the transient high spin species of a3+3 reacts within <10 ms stoichiometrically with cyanide and sulfide and at a slower rate with azide. The transient a3+3 species responds to O2 and CO by changes in signal size or shape, although no oxidoreduction is involved, indicating that a3+3 registers the presence of these gases. The high spin signal of the transient species is readily abolished by ferrocytochrome c or on raising the pH. Decreasing the pH induces a shift from the rhombic towards the axial component of the signal. Since the responses to CO and pH are analogous for the rhombic transient species to those observed with the rhombic high spin ferric heme species produced on partial reduction, it is suggested that the rhombic signals represent a3+3 in either case. In all these experiments, in which EPR detectable a3+3 was observed in large yield, no extra signals for copper or correspondingly increased intensity in the copper signal at g = 2 were seen. The relationship is discussed of the obviously reactive transient species of a3+3 to other ‘activated’ species that have been reported and to the oxidized resting form of the enzyme, which is known to react only slowly with ligands and to respond sluggishly to substrate.  相似文献   

16.
《FEBS letters》1987,220(1):67-73
A photosystem II reaction centre has been isolated from peas and found to consist of D1, D2 polypeptides and the apoproteins of cytochrome b-559, being similar to that reported for spinach by Nanba and Satoh [(1987) Proc. Natl. Acad. Sci. USA 84, 109–112]. The complex binds chlorophyll a, pheophytin and the haem of cytochrome b-559 in an approximate ratio of 4:2:1 and also contains about one molecule of β-carotene. It binds no plastoquinone-9 or manganese but does contain at least one non-haem iron. In addition to a light-induced signal due to Pheo seen under reducing conditions, a light-induced P680+ signal is seen when the reaction centre is incubated with silicomolybdate. In the presence of diphenylcarbazide, the P680+ signal is partially inhibited and net electron flow to silicomolybdate occurs. This net electron flow is insensitive to o-phenanthroline, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene but is inhibited by proteolysis with trypsin and by other treatments. Fluorescence, from the complex, peaks at 682 nm at room temperature and at 685 nm at 77 K. This emission is significantly quenched when either the P680+Pheo or P680Pheo states are established indicating that the fluorescence emanates from the back reaction between P680+ and Pheo.  相似文献   

17.
《Free radical research》2013,47(6):467-474
Hydroxyl and 1-hydroxyethyl radical adducts of 5, 5-dimethylpyrroline N-oxide (DMPO) were prepared by photolysis, and mechanisms for loss of their EPR signals in rat liver microsomal suspensions were evaluated. Rates of NADPH-dependent EPR signal loss were more rapid in phosphate buffer than in Tris buffer. Addition of superoxide dismutase (SOD) partially protected the adducts when Tris was used as a buffer, but was relatively ineffective in the presence of phosphate. The ferrous iron chelator bathophenanthrolene partially protected the spin adducts in the presence and absence of phosphate, but complete protection was observed when SOD was also added. The spin adducts were unstable in the presence of Fe+2 and K3Fe(CN)6, but Fe+3 alone had little effect on the EPR signals. The data are consistent with two mechanisms for microsomal degradation of DMPO spin adducts under these conditions. Microsomes form superoxide in the presence of oxygen and NADPH, which attacks these DMPO spin adducts directly. The spin adducts are also degraded in the presence of Fe+2, and phosphate stimulates this iron-dependent destruction of DMPO spin adducts.  相似文献   

18.
The vibrational properties of the primary donor P840 in the reaction center (RC) of the green sulfur bacterium Chlorobium tepidum and its interactions with the surrounding protein environment have been investigated by Fourier transform infrared (FTIR) difference spectroscopy at cryogenic temperatures. By using the step-scan technique with a time resolution of 5 μs on RCs that had been depleted of the iron–sulfur electron acceptors, the formation and decay of the triplet state 3P840 have been followed in infrared for the first time. The 3P840/P840 FTIR difference spectrum is compared to the P840 +/P840 FTIR difference spectrum measured under identical conditions on untreated RCs and recorded with the same step-scan set-up. The latter P840 +/P840 difference spectrum is essentially the same as those measured under steady-state conditions using the more conventional continuous illumination method. Comparison of the 3P840/P840 and P840 +/P840 spectra provides unambiguous assignment of the vibration of the 9-keto C=O group(s) of P840 at 1684 cm−1 as the only common negative band in the two spectra. This frequency corresponds to carbonyl group(s) free from hydrogen bonding interactions. The obtained results are discussed in the framework of the structure and photochemistry of the primary donor P840. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Panaxatriol, a triterpene bearing a steroid-like structure similar to cardiac glycosides, was presumed to share the same bioactivity with cardiac glycosides, and may be a potential Na+, K+-ATPase inhibitor. In this paper, a series of panaxatriol derivatives were synthesized and evaluated for Na+, K+-ATPase inhibitory activities. The results of biological tests showed that more than half of the synthesized derivatives presented increased inhibitory activities compared with panaxatriol. Of these compounds, 13a with a 3, 4-seco skeleton showed the most potent inhibitory activity, which was equal to that of the standard drug digoxin. To understand the binding mode of the most active compound, molecular docking study of 13a with Na+, K+-ATPase was conducted. Therefore, 13a may serve as a new lead compound for the development of novel Na+, K+-ATPase inhibitors.  相似文献   

20.
A cross-polarization (CP) 31P NMR broadline simulation methodology was developed for studying the effects of drugs in phospholipids bilayers. Based on seven-parameter fittings, this methodology provided information concerning the conformational changes and dynamics effects of losartan in the polar region of the dipalmitoylphosphatidylcholine bilayers. The test molecule for this study was losartan, an antihypertensive drug known to exert its effect on AT1 transmembrane receptors. The results were complemented and compared with those of differential scanning calorimetry, solid-state 13C NMR spectroscopy, Raman spectroscopy, and electron spin resonance. More specifically, these physical chemical methodologies indicated that the amphipathic losartan molecule interacts with the hydrophilic-head zone of the lipid bilayers. The CP 31P NMR broadline simulations showed that the lipid molecules in the bilayers containing losartan displayed greater collective tilt compared to the tilt displayed by the load-free bilayers, indicating improved packing. The Raman results displayed a decrease in the trans/gauche ratio and increased intermolecular interactions of the acyl chains in the liquid crystalline phase. Additional evidence, suggesting that losartan possibly anchors in the realm of the headgroup, was derived from upfield shift of the average chemical shift σiso of the 31P signal in the presence of losartan and from shift of the observed peak at 715 cm−1 attributed to C-N stretching in the Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号