首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rotational mobility of band 3, a protein constituent of the human erythrocyte membrane, was measured by observing the flash-induced transient dichroism of the triplet probe eosin maleimide. In the presence of melittin, a pharmacologically active polypeptide from honey bee (Apis mellifera) venom, a dose-dependent loss of rotational mobility was detected. With acetylated melittin, the ability to immobilise is reduced. Succinylated melittin, however, is devoid of immobilising activity.The possible relevance of these findings to the normal mode of action of melittin was examined by comparing the relative abilities of the native, acetylated and succinylated melittins to lyse erythrocytes and synergise with phospholipase A2, another constituent of bee venom. For both these properties, the order of effectiveness is native melittin > acetyl melittin > succinyl melittin = 0, the same as their order of effectiveness in immobilising band 3.A mechanism is proposed in which melittin is anchored in the membrane by its hydrophobic N-terminus, while its cationic C-terminal moiety binds to negatively charged residues on membrane proteins. This leads either directly or indirectly to protein aggregation and hence loss of mobility. From a detailed comparison of the different effects of the melittin derivatives, it is concluded that melittin may function in vivo by aggregating membrane proteins in order to allow phospholipase A2 to gain access to the membrane bilayer and commence catalysis.  相似文献   

2.
The molecular mechanisms underlying the various effects of melittin on membranes have not been completely defined and much of the evidence described indicates that different molecular mechanisms may underlie different actions of the peptide. Ideas about the formation of transbilayer aggregates of melittin under the influence of a transbilayer potential, and for bilayer structural perturbation arising from the location of the peptide helix within the head group region of the membrane have been made based on the crystal structure of the peptide, the kinetics and concentration dependence of melittins membrane actions, together with simple ideas about the conformational properties of amphipathic helical peptides and their interactions with membranes. Physical studies of the interaction of melittin with model membranes have been useful in determining the potential of the peptide to adopt different locations, orientations and association states within membranes under different conditions, but the relationship of the results obtained to the actions of melittin in cell membranes or under the influence of a membrane potential are unclear. Experimental definition of the interaction of melittin with more complex membranes, including the erythrocyte membrane or in bilayers under the influence of a transmembrane potential, will require direct study in these membranes. Experiments employing labeled melittins for ESR, NMR or fluorescence experiments are promising both for their sensitivity (ESR and fluorescence) and the ability to focus on the peptide within the background of endogenous proteins within cell membranes. The study of melittin in model membranes has been useful for the development of methodology for determination of membrane protein structures. Despite the structural complexity of integral membrane proteins, it is interesting that in some respects their study be more straightforward, lacking as they do the elusive properties of melittin (and other structurally labile membrane peptides) which limit the possibility of defining their interaction with membranes in terms of a single conformation, location, orientation and association state within the membrane.  相似文献   

3.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

4.
S Fujikawa 《Cryobiology》1985,22(1):69-76
The changes of membrane ultrastructures by freezing stresses were examined on stripped ghosts which were made by removing almost all peripheral membrane proteins from human erythrocyte membranes. By freezing these stripped ghost membranes showed cooling rate-dependent intramembrane particle (IMP) aggregation. With the cooling rates at and faster than 30,000 degrees C/min, their IMPs were evenly distributed on the fracture faces. However, cooling rates at and slower than 8000 degrees C/min resulted in IMP aggregation. The degree of IMP aggregation increased in parallel with decreasing cooling rates. Without freezing, the IMP aggregation in stripped ghosts could be induced by exposing these ghosts to hypertonic salt solutions, but lowering the temperature did not affect IMP aggregation. The cooling rate-dependent IMP aggregation during freezing was suppressed by adding cryoprotective agents which were known to reduce the salt concentration of the medium during freezing. It is suggested that the IMP aggregation in stripped ghosts by freezing occurs by exposure to concentrated salt solutions during freezing. This result indicates the possibility that IMP aggregation may arise during slow freezing of some biomembranes as a result of an increase in salt concentration rather than as a result of reduction in temperature.  相似文献   

5.
Melittin free of phospholipase A2 was prepared. In the absence of salt this highly pure protein starts to aggregate in solution at a protein concentration of Cp greater than 10(-3) M. In high salt solution (2 M) aggregation starts at Cp greater than 10(-6) M. This was determined from the blue shift of the intrinsic fluorescence of the protein. Reinvestigation of the quenching behaviour clearly shows that self-aggregation cannot be deduced from quenching experiments using nitrate or 2,2,6,6-tetramethylpiperidine-1-oxyl as quencher. The incorporation of melittin into phosphatidylcholine bilayer vesicles was studied by fluorescence quenching and by energy-transfer experiments using 2- and 6-anthroyloxypalmitic acid as acceptor and peptide tryptophan as donor. Incorporation of melittin into small unilamellar vesicles was found to be reduced below the lipid phase transition temperature, Tt, whereas it incorporates and distributes more randomly above Tt. Cooling the temperature below Tt after incubation at T greater than Tt leads to a deeper incorporation of the peptide into the lipid bilayer due to electrostatic interaction between the lipid phosphate groups and the positively charged amino acids. This stabilizing effect is lost above Tt and melittin is extruded to the polar phase. Quenching experiments support this finding. EPR measurements clearly demonstrate that even in the presence of high amounts of melittin up to 10 mol% with respect to the lipid broadening of the phase transition curves was only observed with fatty acid spin labels, where the doxyl group is localized near the bilayer surface. The order degree of the inner part of the bilayer remains almost unchanged even in the presence of high melittin content.  相似文献   

6.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30-40 nm in height and 90-100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

7.
The actions of bee venom melittin and delta-lysin from Staphylococcus aureus on membranes have been monitored by solid-state deuterium and phosphorus NMR and shown to differ depending on temperature and on the lipid-to-peptide molar ratio Ri. In the gel phase of phosphatidylcholine model membranes, for lipid-to-peptide ratios Ri greater than 15, melittin induces isotropic lines interpreted as reflecting the presence of small discoidal structures, whereas delta-lysin does not. These small objects are metastable, that is, within a time-scale of hours they return to large lipid bilayers. The kinetics of this process depend on the lecithin chain length. In the fluid phases, at temperatures greater than that of the gel-to-fluid transition Tc, analysis of the quadruplar splittings in terms of chain ordering indicates that both melittin and delta-lysin similarly disorder the membrane. At temperatures above but close to Tc, melittin preferentially orders the center of the bilayer, while delta-lysin promotes ordering throughout the entire bilayer thickness. These effects are interpreted as reflecting different locations of the peptides with respect to the membrane surface. The addition of greater amounts of toxins, Ri = 4, on phosphatidylcholine model membranes induces very small structures irrespective of the temperature in the case of melittin, but only above Tc for delta-lysin. NMR spectral features similar to those characterizing the small fast-tumbling objects with phosphatidylcholine are also observed with egg phosphatidylethanolamine and erythrocyte membranes. The formation of small structures is thus inferred as a general process which reflects membrane supramolecular reorganization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Understanding the molecular mechanism underlying pore formation in lipid membranes by antimicrobial peptides is of great importance in biological sciences as well as in drug design applications. Melittin has been widely studied as a pore forming peptide, though the molecular mechanism for pore formation is still illusive. We examined the free energy barrier for the creation of a pore in lipid membranes with and without multiple melittin peptides. It was found that six melittin peptides significantly stabilized a pore, though a small barrier (a few kBT) for the formation still existed. With five melittin peptides or fewer, the pore formation barrier was much higher, though the established pore was in a local energy minimum. Although seven melittins effectively reduced the free energy barrier, a single melittin peptide left the pore after a long time MD simulation probably because of the overcrowded environment around the bilayer pore. Thus, it is highly selective for the number of melittin peptides to stabilize the membrane pore, as was also suggested by the line tension evaluations. The free energy cost required to insert a single melittin into the membrane is too high to explain the one-by-one insertion mechanism for pore formation, which also supports the collective melittin mechanism for pore formation.  相似文献   

9.
The membrane-disruptive capacities of melittin, derivatised melittins, alamethicin and gramicidin S have been compared for the human erythrocyte membrane and lipid vesicles of three different compositions (phosphatidylcholine, 85% phosphatidylcholine/15% phosphatidylserine, and a lipid analogue of the outer leaflet of the human erythrocyte membrane). The sensitivity to ionic strength, divalent metal ions and polylysine of release of fluorescent markers from liposomes and of haemoglobin from intact erythrocytes has been assayed. Acetyl melittin was found to he more effective than melittin in lysing phosphatidylcholine and phosphatidylcholine/phosphatidylserine vesicles, somewhat less effective in the lipid analogue and markedly less effective in lysing erythrocytes. Succinyl melittin was non-haemolytic, but was able to lyse lipid vesicles at a high concentration. Ca2+ inhibited melittin haemolysis at high ionic strength (150 mM NaCl), but produced a more complex response of stimulation followed by inhibition at low ionic strength. In lipid vesicles, Ca2+ either stimulated melittin lysis or was ineffective. Zn2+ exerted effects similar to Ca2+ with lipid vesicles at approx. 10-fold lower concentration except that a weak inhibition was observed for the erythrocyte membrane lipid analogue at high ionic strength. Polylysine strongly inhibited haemolysis by melittin at low ionic strength, but was ineffective or stimulatory in lipid vesicle lysis. High phosphate concentration also inhibited melittin haemolysis, but again no corresponding effect could he found in any of the lipid vesicle systems. These disparities between effects of melittin on erythrocytes and lipid vesicles support the proposal that melittin-protein interactions are of consequence to its haemolytic action. Similar experiments were performed with gramicidin S and alamethicin in order to compare their lytic properties with those of melittin. It was found that each lysin exhibited its own individual pattern of sensitivity to lipid composition, ionic strength and inhibition by cations. It thus appears likely that the detailed molecular interactions responsible for lysis are significantly different for each of these three agents.  相似文献   

10.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30–40 nm in height and 90–100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

11.
E Kn?ppel  D Eisenberg  W Wickner 《Biochemistry》1979,18(19):4177-4181
Bee venom melittin is a water-soluble tetramer of identical polypeptide chains. Each chain has 26 residues. The 20 N-terminal residues are hydrophobic and the 6 C-terminal residues are basic. Melittin has been shown to integrate into natural and synthetic membranes and to lyse a wide variety of cells. To understand how a water-soluble protein can spontaneously partition into a membrane, we have studied the interaction of melittin with micelles of deoxycholate (DOC), Brij 58, and sodium dodecyl sulfate (NaDodSO4). Circular dichroism spectra showed that NaDodSO4, an ionic detergent, and Brij 58, a nonionic detergent, caused similar major changes in the protein's conformation. Gel filtration studies revealed that melittin forms mixed micelles with either Brij or DOC. The melittin-DOC mixed micelles have 2 mol of DOC per mol of melittin. Cross-linking studies with dimethyl suberimidate confirmed that the protein is a tetramer and showed that it becomes monomeric either in mixed micelles with Brij or DOC or in butanol. Despite this major structural change of melittin in the presence of an amphiphile, the covalently cross-linked form is as active in human erythrocyte lysis as the native protein.  相似文献   

12.
The cytotoxic peptide from honeybee venom, melittin, and a synthetic peptide analogue of it lyse human erythrocytes in a biphasic process. The kinetics of the lysis in 0.30 M sucrose, 0.01 M sodium phosphate, pH 7.30 at 4 degrees C were investigated. Our results show that melittin rapidly binds to the outer surface of the erythrocyte membrane, and the surface-bound monomers produce transient openings through which approximately 40 hemoglobin molecules can escape. Concomitantly, the melittin loses its ability to effect the process, presumably by translocation through the bilayer. The half-life for this process is 1.2 min. In a much slower process, dimers of this internalized melittin again produce transient membrane openings in a steady state. On a molar basis, the synthetic peptide analogue produces a fast process comparable to that caused by melittin, but is more efficient in the slow phase. Escape of hemoglobin and of carbonic anhydrase through the openings is diffusion controlled. These results suggest that the functional units necessary for the activity of melittin-like cytotoxic peptides are a 20 amino acid amphiphilic alpha-helix with a hydrophobic:hydrophilic ratio greater than 1 and a short segment with a high concentration of positive charges.  相似文献   

13.
The effect of diamide on the physicochemical state of proteins and lipids of human erythrocyte membrane was studied. It was found that diamide at a concentration of 1 mM decreases the content of the SH-groups of membrane proteins by approximately 50%, resulting in enhanced vesiculation of erythrocytes upon metabolic exhaustion of cells. It was shown using fluorescein isothiocyanate-labeled concanavalin A and 4,4'-diisothiocyano-2,2'-stilbene disulfonate that diamide changes the structural state of the main integral protein of erythrocyte membranes, the band 3 protein. Changes in the microviscosity of the membrane lipid bilayer depending on diamide concentration were determined from the changes in the fluorescence parameters of the lipophilic probes (pyrene and 1,6-diphenyl-3,5-hexatriene). The level of lipid peroxidation products in membranes remained unchanged. It follows from these data that the SH-oxidizing agent diamide does not directly interact with the lipid bilayer of membrane and produces changes in the physicochemical state of lipids presumably by disrupting protein-lipid interactions that take place upon oxidation of the SH-groups and cross-linking of membrane proteins.  相似文献   

14.
It has been established in experiments with the bilayer lipid membranes (BLM) that at pH greater than 6.6 the melittin pores are cation-selective and at lower pH they are more selective by anions. The property of melittin pores is shown to be provided by the amino group of the N-terminal glycine residue. The selectivity of melittin-containing membranes may be controlled by the transmembrane potential, the cross-section of water pores being changed. The data obtained are explained within the alimethicine-like model.  相似文献   

15.
Addition of an amphipathic bee venom peptide, melittin, to sarcoplasmic reticulum (SR) vesicles isolated from rabbit skeletal muscles resulted in a fast (<1 min) blue shift in the fluorescence maximum of the melittin--SR membrane complex. Over the following 45 min the position of the fluorescence maximum did not change, but the fluorescence intensity of the melittin--SR membrane complex decreased by approximately 35% with rate constant 0.14 min-1. Melittin rapidly quenched the isotropic signal in the EPR spectrum of spin-labeled stearic acid added to SR membranes. Further changes in the spectral parameters of the spin probe bound to SR membranes in the presence of melittin indicated an increase of the viscosity of the probe microenvironment (empiric parameter T/eta was decreased by approximately 35% with rate constant 0.11 min-1). The surface potential of SR membranes measured using a pH-sensitive dye, neutral red, decreased after melittin addition from -60 to -30 mV. It was demonstrated with the use of a cross-linking agent, cupric o-phenanthroline, that melittin induced slow aggregation of Ca-ATPase protein in SR membranes; the content of enzyme in the monomeric form decreased with rate constant 0.14 min-1. It is concluded that melittin binds rapidly to SR membranes, inducing slow changes in Ca-ATPase conformation and oligomeric state as well as structural transitions in the lipid bilayer of SR membranes.  相似文献   

16.
Rex S 《Biophysical chemistry》2000,85(2-3):209-228
Melittin, the main component of bee venom of Apis mellifera, contains a proline at position 14, which is highly conserved in related peptides of various bee venoms. To investigate the structural and functional role of Pro14 a melittin analogue was studied where proline is substituted by an alanine residue (P14A). The investigations were focussed on: (i) the secondary structure in aqueous solution and membranes; (ii) the self-association in solution; (iii) the binding to POPC membranes; and (iv) the P14A-induced leakage and pore formation in membrane vesicles. Circular dichroism and gel filtration experiments showed that P14A exists at concentrations < 12 microM in monomeric form with an alpha-helicity of 28 +/- 7%. A further increase in peptide concentration leads to the formation of large aggregates consisting of 9 +/- 1 monomers. While binding studies with POPC vesicles revealed for P14A a stronger binding affinity towards membranes than for melittin, the peptide-induced leakage of fluorescent markers from vesicles was less efficient for P14A than for melittin. Furthermore, an unexpected efflux behaviour at high values of bound P14A was observed which indicated that the pore formation kinetics for P14A is more complex than it was reported for melittin. The different features of P14A in aggregation, binding and efflux compared to melittin are mainly ascribable directly to structural changes caused by the proline --> alanine substitution. Furthermore, the results indicate an improved screening of the positively charged residues of P14A by counterions which contributes additionally to the observed differences in peptide activities. It is suggested that the presence of proline in melittin is not only of structural importance but also influences indirectly the electrostatic properties of the native peptide.  相似文献   

17.
The 25 residue presequence (p25) for subunit IV of yeast cytochrome oxidase had previously been shown to possess structural and behavioural characteristics in common with the bee venom polypeptide, melittin. The present study extends the results of leakage experiments on model-membrane systems to the haemolysis of human erythrocytes, which both peptides are shown to accomplish in a manner sensitive to membrane potential. In addition, the laser flash-induced transient dichroism technique for measuring protein rotational diffusion has been used to show that both peptides aggregate band 3, the major integral membrane protein of the erythrocyte. Aggregation cannot be reversed by high ionic strength; this serves to differentiate these peptides from other positively charged species such as polylysine that aggregate band 3 at low ionic strength. These results suggest that aggregation of membrane proteins may possibly prove to be a feature of the interaction of p25 signal peptide with mitochondrial membranes.  相似文献   

18.
The effects of lysophosphatidylcholine (lysoPC) on human erythrocyte (RBC) ghost morphology, transmembrane protein and lipid lateral mobilities, and membrane lipid composition were studied in order to elucidate mechanisms by which lysoPC immobilizes ghost membrane components [Golan, D. E., Brown, C. S., Cianci, C. M. L., Furlong, S. T., & Caulfield, J. P. (1986) J. Cell Biol. 103, 819-828]. Under standardized conditions 1.0-1.5 micrograms/mL egg lysoPC lysed 50% of RBCs and induced, in some ghosts, the formation of large patches of wrinkled membrane. Patches exhibited complete immobilization of glycophorin and band 3 and partial immobilization of the phospholipid analogue fluorescein phosphatidylethanolamine (Fl-PE), whereas adjacent smooth membrane areas manifested only partial immobilization of proteins and no immobilization of Fl-PE. Supralytic concentrations of lysoPC induced both progressive, homogeneous wrinkling of RBC ghost membranes and concentration-dependent decreases in the lateral mobilities of glycophorin, band 3, and Fl-PE. Complete immobilization of glycophorin and band 3 occurred at 8.4 micrograms/mL lysoPC and of Fl-PE at 16.8 micrograms/mL lysoPC. Monopalmitoylphosphatidylcholine (MPPC), the major component of egg lysoPC, induced both membrane wrinkling and a concentration-dependent decrease in Fl-PE mobility, with complete immobilization at 10 micrograms/mL. Other synthetic lysoPCs did not completely immobilize Fl-PE, although some caused membrane wrinkling. MPPC was incorporated into ghost membranes with a linear dependence (r = 0.97) on MPPC concentration. Relative to total membrane lipid, the lysoPC mole fraction increased from 0.2 +/- 0.1% at 0 micrograms/mL MPPC to 25 +/- 2% at 16 micrograms/mL MPPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Morphological changes induced by the melittin tetramer on bilayers of egg phosphatidylcholine and dipalmitoylphosphatidylcholine have been studied by quasi-elastic light scattering, gel filtration and freeze-fracture electron microscopy. It is concluded that melittin similarly binds and changes the morphology of both single and multilamellar vesicles, provided that their hydrocarbon chains have a disordered conformation, i.e., at temperatures higher than that of the transition, Tm. When the hydrocarbon chains are ordered (gel phase), only small unilamellar vesicles are morphologically affected by melittin. However after incubation at T greater than Tm, major structural changes are detected in the gel phase, regardless of the initial morphology of the lipids. Results from all techniques agree on the following points. At low melittin content, phospholipid-to-peptide molar ratios, Ri greater than 30, heterogeneous systems are observed, the new structures coexisting with the original ones. For lipids in the fluid phase and Ri greater than 12, the complexes formed are large unilamellar vesicles of about 1300 +/- 300 A diameter and showing on freeze-fracture images rough fracture surfaces. For lipids in the gel phase, T less than Tm after passage above Tm, and for 5 less than Ri less than 50, disc-like complexes are observed and isolated. They have a diameter of 235 +/- 23 A and are about one bilayer thick; their composition corresponds to one melittin for about 20 +/- 2 lipid molecules. It is proposed that the discs are constituted by about 1500 lipid molecules arranged in a bilayer and surrounded by a belt of melittin in which the mellitin rods are perpendicular to the bilayer. For high amounts of melittin, Ri less than 2, much smaller and more spherical objects are observed. They are interpreted as corresponding to lipid-peptide co-micelles in which probably no more bilayer structure is left. It is concluded that melittin induces a reorganization of lipid assemblies which can involve different processes, depending on experimental conditions: vesicularization of multibilayers; fusion of small lipid vesicles; fragmentation into discs and micelles. Such processes are discussed in connexion with the mechanism of action of melittin: the lysis of biological membranes and the synergism between melittin and phospholipases.  相似文献   

20.
A C Newton  W H Huestis 《Biochemistry》1988,27(13):4655-4659
Band 3, the erythrocyte anion transporter, transfers spontaneously between human red cells and model membranes. During incubation of intact erythrocytes with sonicated dimyristoylphosphatidylcholine vesicles, the transporter inserts in functional form and native orientation into the liposome bilayer, with the cytoplasmic segment of the protein contacting the lumen of the vesicle [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117; Huestis, W. H., & Newton, A. C. (1986) J. Biol. Chem. 261, 16274-16278]. When band 3-vesicle complexes are incubated with erythrocytes whose native band 3 has been inhibited irreversibly, reverse transfer of the protein restores anion transport capacity to the cells [Newton, A. C., Cook, S. L., & Huestis, W. H. (1983) Biochemistry 22, 6110-6117]. Here we report the vesicle-mediated transfer of band 3 to human peripheral blood lymphocytes and to cultured murine lymphoma cells (BL/VL3). Subsequent to incubation with protein-vesicle complexes, both lymphoid cell types exhibit a 2-4-fold increase in the rate of chloride uptake. This enhanced permeability is inhibited greater than or equal to 98% by the exofacial band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, consistent with right-side-out insertion of functional band 3 into the lymphoid cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号