首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell-attached configuration of the patch-clamp technique was used to study the volume-sensitive anion conductance in isolated rat pancreatic beta-cells at the single-channel level. In unstimulated cells, current level was close to zero. Exposure of cells to a 33% hypotonic solution resulted in the generation of an inward current at 0 mV pipette potential. A similar inward current was elicited by a rise in glucose concentration or by addition of alpha-ketoisocaproate. In contrast, the sulphonylurea tolbutamide was ineffective. The inward current evoked by hypotonic solutions consisted of occasional discreet channel events interspersed with periods of current noise which could not be clearly resolved into unitary channel events. Stimulation with glucose resulted in a predominantly noisy pattern of current. With a reduced [Cl(-)] pipette solution, regular channel openings could be resolved in the presence of a stimulatory glucose concentration, with a calculated conductance of 215 pS. Channel activity could also be recorded in excised inside-out patches, though rapid 'rundown' occurred under such conditions. It is concluded that hypotonic solutions and glucose activate the volume-sensitive anion channel in the cell-attached configuration by increasing channel open probability. This generates an inward current in non-voltage-clamped cells. The channel showed complex kinetics which depended in part upon extracellular [Cl(-)].  相似文献   

2.
These studies examine the properties of an apical potassium (K+) channel in macula densa cells, a specialized group of cells involved in tubuloglomerular feedback signal transmission. To this end, individual glomeruli with thick ascending limbs (TAL) and macula densa cells were dissected from rabbit kidney and the TAL covering macula densa cells was removed. Using patch clamp techniques, we found a high density (up to 54 channels per patch) of K+ channels in the apical membrane of macula densa cells. An inward conductance of 41.1 +/- 4.8 pS was obtained in cell-attached patches (patch pipette, 140 mM K+). In inside- out patches (patch pipette, 140 mM; bath, 5 mM K+), inward currents of 1.1 +/- 0.1 pA (n = 11) were observed at 0 mV and single channel current reversed at a pipette potential of -84 mV giving a permeability ratio (PK/PNa) of over 100. In cell-attached patches, mean channel open probability (N,Po, where N is number of channels in the patch and Po is single channel open probability) was unaffected by bumetanide, but was reduced from 11.3 +/- 2.7 to 1.6 +/- 1.3 (n = 5, p < 0.02) by removal of bath sodium (Na+). Simultaneous removal of bath Na+ and calcium (Ca2+) prevented the Na(+)-induced decrease in N.Po indicating that the effect of Na+ removal on N.Po was probably mediated by stimulation of Ca2+ entry. This interpretation was supported by studies where ionomycin, which directly increases intracellular Ca2+, produced a fall in N.Po from 17.8 +/- 4.0 to 5.9 +/- 4.1 (n = 7, p < 0.02). In inside- out patches, the apical K+ channel was not sensitive to ATP but was directly blocked by 2 mM Ca2+ and by lowering bath pH from 7.4 to 6.8. These studies constitute the first single channel observations on macula densa cells and establish some of the characteristics and regulators of this apical K+ channel. This channel is likely to be involved in macula densa transepithelial Cl- transport and perhaps in the tubuloglomerular feedback signaling process.  相似文献   

3.
Sand P  Rydqvist B 《Life sciences》2002,71(8):855-864
The low conductance K(+) channel found in human colonocytes was investigated using the patch-clamp technique. The channel is Ca(++)-dependent and is blocked by Ba(++) (5 mM) with a decrease in open probability from 0.42 to 0.19. At -40 mV the slope conductance was 29 pS (using intracellular solution in the pipette). In inside-out patches, inward rectification was seen both with KCl (pipette)/NaCl (bath) solutions as well as KCl/KCl solutions. The rectification could not be affected by omitting Mg(++) from the pipette or the bath solution, neither by exposing the patches to the polyamine spermine (1 mM). Using the Goldman-Hodgkin-Katz equation we show that the permeability decreased in a linear fashion from approximately 5.2 x 10(-14) cm(3)/s to 1.8 x 10(-14) cm(3)/s (-100 to +100 mV), both with and without Mg(++) in the solutions. There was no significant difference in the nominal values of permeability. This property of the K(+) channel may facilitate the hyperpolarization needed to sustain a chloride secretion.  相似文献   

4.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

5.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

6.
A cation selective channel was identified in the apical membrane of fetal rat (Wistar) alveolar type II epithelium using the patch clamp technique. The single channel conductance was 23 +/- 1.2 pS (n = 16) with symmetrical NaCl (140 mM) solution in the bath and pipette. The channel was highly permeable to Na+ and K+ (PNa/PK = 0.9) but essentially impermeant to chloride and gluconate. Membrane potential did not influence open state probability when measured in a high Ca2+ (1.5 mM) bath. The channel reversibly inactivated when the bath was exchanged with a Ca(2+)-free (less than 10(-9) M) solution. The Na+ channel blocker amiloride (10(-6) M) applied to the extracellular side of the membrane reduced P(open) relative to control patches; P(control) = 0.57 +/- 0.11 (n = 5), P(amiloride) = 0.09 +/- 0.07 (n = 4, p less than 0.01), however, amiloride did not significantly influence channel conductance (g); g(control) 19 +/- 0.9 pS (n = 5), 18 +/- 3.0 pS (n = 4). More than one current level was observed in 42% (16/38) of active patches; multiple current levels (ranging from 2 to 6) were of equal amplitude suggesting the presence of multiple channels or subconductance states. Channel activity was also evident in cell attached patches. Since monolayers of these cells absorb Na+ via an amiloride sensitive transport mechanism we speculate that this amiloride sensitive cation selective channel is a potential apical pathway for electrogenic Na+ transport in the alveolar region of the lung.  相似文献   

7.
We have previously described a high conductance calcium-activated 'maxi K' channel in primary cultures of human eccrine sweat gland cells both from normal subjects and those with cystic fibrosis. In further studies we have now identified a potassium-selective channel of much lower conductance which shows outward-rectification and which is present in sweat glands isolated from cystic fibrosis subjects. In experiments with inside-out patches using symmetrical pipette and bath solutions containing 140 mM K+ the channel showed an outward slope conductance (at +50 mV) of approximately 26 pS and an inward conductance (at -50 mV) of approximately 11 pS. When K+ in the bath was replaced by Na+ the reversal potential shifts to reveal a permeability ratio PK/PNa approximately 40 Unlike the maxi-K+ channel, the outward-rectifying channel does not show sensitivity to Ca2+. Channels were found in cells cultured from the glands of four out of five cystic fibrosis subjects. In cells cultured from 30 subjects who did not have cystic fibrosis, an outward-rectifying potassium channel was seen in only one out of approximately 3000 patches.  相似文献   

8.
The endogenous Mg(2+)-inhibited cation (MIC) current was recently described in different cells of hematopoietic lineage and was implicated in the regulation of Mg2+ homeostasis. Here we present a single channel study of endogenously expressed Mg(2+)-dependent cation channels in the human myeloid leukemia K562 cells. Inwardly directed unitary currents were activated in cell-attached experiments in the absence of Ca2+ and Mg2+ in the pipette solution. The current-voltage (I-V) relationships displayed strong inward rectification and yielded a single channel slope conductance of approximately 30 pS at negative potentials. The I-V relationships were not altered by patch excision into divalent-free solution. Channel open probability (P(o)) and mean closed time constant (tau(C)) were strongly voltage-dependent, indicating that gating mechanisms may underlie current inward rectification. Millimolar concentrations of Ca2+ or Mg2+ applied to the cytoplasmic side of the membrane produced slow irreversible inhibition of channel activity. The Mg(2+)-dependent cation channels described in this study differ from the MIC channels described in human T-cells, Jurkat, and rat basophilic leukemia (RBL) cells in their I-V relationships, kinetic parameters and dependence on intracellular divalent cations. Our results suggested that endogenously expressed Mg(2+)-dependent cation channels in K562 cells and the MIC channels in other hematopoietic cells might be formed by different channel proteins.  相似文献   

9.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

10.
'Patch-clamp' experiments in the cell-attached configuration have shown the existence of three distinct types of ion channels in the plasma membrane of Dictyostelium discoideum. Channels DI (slope conductance 11 pS) and DII (slope conductance 6 pS) promote an outward current at depolarizing voltages. A third ion channel (HI, slope conductance 3 pS) opens preferentially at hyperpolarization and promotes inward current flow. It is suggested that under physiological conditions current through the DI and DII channels is carried by K+, whereas Ca2+ may be the current carrier in the HI channel. The density of these ion channels in the membrane of D. discoideum is low: approx. 0.1/micron 2 for the DI and HI channel and 0.02/micron 2 for the DII channel. The gating properties of the ion channels appear to be complicated because openings are grouped into bursts of activity. The probability of the DI channel being in the open state increases with depolarization. The mean channel life-time is about 20 ms and voltage-independent. The burst duration increases with depolarization whereas the interburst time decreases. The minimal kinetic model accounting for the behaviour of the DI channel is a three-state model with two closed and one open state. A detailed analysis of the gating of the DII and the HI channel was prevented by their low rate of occurrence (DII) or fast inactivation (HI). The formation of a seal resistance greater than or equal to 1 G omega depends critically on the composition of the pipette solution. Examination of a series of monovalent and divalent cations as well as different organic and inorganic anions has shown that 'gigaseals' are formed only in the presence of at least 1 mM Ca2+ or Sr2+, whereas Ba2+, Mg2+ and monovalent cations (Li+, Na+, K+, Rb+, Cs+) do not support the formation of high seal resistances. Anions seem not to affect the seal formation.  相似文献   

11.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

12.
The effects of quinidine on single inward rectifier K channels were investigated in cell-attached patches with 4.5 mM pipette potassium concentrations. Under these conditions, the single-channel slope conductance of the predominant conductance level of the inward rectifier channels was 3.9 +/- 0.3 pS at membrane potentials between -75 and -150 mV. Quinidine reversibly decreased the likelihood of channel opening to the main conductance level without reducing the single-channel conductance, and also reduced the probability of channel opening to subconducting levels. Quinidine had no significant effects on the channel open times, and the inhibition of channel opening was only slightly voltage dependent over the range of membrane potentials investigated. Quinidine induced a complete cessation of channel openings for brief periods (up to 2 min), suggesting that quinidine promoted occupancy of a state from which opening was less likely. Occasional long periods (up to an hour) with an absence of channel activity were also observed but quinidine did not appear to promote this behavior. The data suggest that quinidine decreases the ability of the channel to enter both main and subconducting states. By binding to a particular closed conformation of the channel, quinidine could reduce the likelihood of channel opening. The main features of these observations could be accounted for using the three-state kinetic model proposed by Sakmann, B. and G. Trube (1984b. J. Physiol. [Lond.]. 347:659-683.) with quinidine binding to the middle closed state.  相似文献   

13.
Whole-cell and single channel currents were studied in cells from frog (R. pipiens and R. catesbiana) skin epithelium, isolated by collagenase and trypsin treatment, and kept in primary cultures up to three days. Whole-cell currents did not exhibit any significant time-dependent kinetics under any ionic conditions used. With an external K gluconate Ringer solution the currents showed slight inward rectification with a reversal potential near zero and an average conductance of 5 nS at reversal. Ionic substitution of the external medium showed that most of the cell conductance was due to K and that very little, if any, Na conductance was present. This confirmed that most cells originate from inner epithelial layers and contain membranes with basolateral properties. At voltages more positive than 20 mV outward currents were larger with K in the medium than with Na or N-methyl-D-glucamine. Such behavior is indicative of a multi-ion transport mechanism. Whole-cell K current was inhibited by external Ba and quinidine. Blockade by Ba was strongly voltage dependent, while that by quinidine was not. In the presence of high external Cl, a component of outward current that was inhibited by the anion channel blocker diphenylamine-2-carboxylate (DPC) appeared in 70% of the cells. This component was strongly outwardly rectifying and reversed at a potential expected for a Cl current. At the single channel level the event most frequently observed in the cell-attached configuration was a K channel with the following characteristics: inward-rectifying I-V relation with a conductance (with 112.5 mM K in the pipette) of 44 pS at the reversal potential, one open and at least two closed states, and open probability that increased with depolarization. Quinidine blocked by binding in the open state and decreasing mean open time. Several observations suggest that this channel is responsible for most of the whole-cell current observed in high external K, and for the K conductance of the basolateral membrane of the intact epithelium. On a few occasions a Cl channel was observed that activated upon excision and brief strong depolarization. The I-V relation exhibited strong outward rectification with a single channel conductance of 48 pS at 0 mV in symmetrical 112 mM Cl solutions. Kinetic analysis showed the presence of two open and at least two closed states. Open time constants and open probability increased markedly with depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Ion channels in human endothelial cells.   总被引:4,自引:0,他引:4  
Ion channels were studied in human endothelial cells from umbilical cord by the patch clamp technique in the cell attached mode. Four different types of ion channels were recorded: i) potassium channel current that rectifies at positive potentials in symmetrical potassium solutions (inward rectifier); ii) low-conductance non-selective cation channel with a permeability ratio K:Na:Ca = 1:0.9:0.2; iii) high-conductance cation-selective channel that is about 100 times more permeable for calcium than for sodium or potassium; iv) high-conductance potassium channel with a permeability ratio K:Na = 1:0.05. The extrapolated reversal potential of the inwardly rectifying current was near to the potassium equilibrium potential. The slope conductance decreased from 27 pS in isotonic KCl solution to 7 pS with 5.4 mmol/l KCl and 140 mmol/l NaCl in the pipette but 140 mmol/l KCl in the bath. The low-conductance non-selective cation channel showed a single-channel conductance of 26 pS with 140 mmol/l Na outside, 28 pS with 140 mmol/l K outside, and rectified in inward direction in the presence of Ca (60 mmol/l Ca, 70 mmol/l Na, 2.7 mmol/l K in the pipette) at negative potentials. The current could be observed with either chloride or aspartate as anion. The high-conductance non-selective channel did not discriminate between Na and K. The single-channel conductance was about 50 pS. The extrapolated reversal potential was more positive than +40 mV (140 K or 140 Na with 5 Ca outside). Both the 26 and 50 pS channel showed a run-down, and they rapidly disappeared in excised patches. The high-conductance potassium channel with a single-channel conductance of 170 pS was observed only rarely. It reversed near the expected potassium equilibrium potential. The 26 pS channel could be stimulated with histamine and thrombin from outside in the cell-attached mode. Both the 26 pS as well as the 50 pS channel can mediate calcium flux into the endothelial cell.  相似文献   

15.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

16.
Voltage-gated n-type K(V) and Ca(2+)-activated K+ [K(Ca)] channels were studied in cell-attached patches of activated human T lymphocytes. The single-channel conductance of the K(V) channel near the resting membrane potential (Vm) was 10 pS with low K+ solution in the pipette, and 33 pS with high K+ solution in the pipette. With high K+ pipette solution, the channel showed inward rectification at positive potentials. K(V) channels in cell-attached patches of T lymphocytes inactivated more slowly than K(V) channels in the whole-cell configuration. In intact cells, steady state inactivation at the resting membrane potential was incomplete, and the threshold for activation was close to Vm. This indicates that the K(V) channel is active in the physiological Vm range. An accurate, quantitative measure for Vm was obtained from the reversal potential of the K(V) current evoked by ramp stimulation in cell-attached patches, with high K+ solution in the pipette. This method yielded an average resting Vm for activated human T lymphocytes of -59 mV. Fluctuations in Vm were detected from changes in the reversal potential. Ionomycin activates K(Ca) channels and hyperpolarizes Vm to the Nernst potential for K+. Elevating intracellular Ca2+ concentration ([Ca2+]i) by ionomycin opened a 33-50-pS channel, identified kinetically as the CTX-sensitive IK-type K(Ca) channel. The Ca2+ sensitivity of the K(Ca) channel in intact cells was determined by measuring [Ca2+]i and the activity of single K(Ca) channels simultaneously. The threshold for activation was between 100 and 200 nM; half-maximal activation occurred at 450 nM. At concentrations > 1 microM, channel activity decreased. Stimulation of the T-cell receptor/CD3 complex using the mitogenic lectin, PHA, increased [Ca2+]i, and increased channel activity and current amplitude resulting from membrane hyperpolarization.  相似文献   

17.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

18.
We report here that large conductance K(+) selective channel in adrenal chromaffin granules is controlled by pH. We measured electrogenic influx of (86)Rb(+) into chromaffin granules prepared from bovine adrenal gland medulla. The (86)Rb(+) influx was inhibited by acidic pH. Purified chromaffin granule membranes were also fused with planar lipid bilayer. A potassium channel with conductance of 432+/-9 pS in symmetric 450 mM KCl was observed after reconstitution into lipid bilayer. The channel activity was unaffected by charybdotoxin, a blocker of the Ca(2+)-activated K(+) channel of large conductance. It was observed that acidification to pH 6.4 cis side of the membrane lowered the channel open probability and single channel conductance. Whereas only weak influence on the single channel current amplitude and open probability were observed upon lowering of the pH at the trans side. We conclude that a pH-sensitive large conductance potassium channel operates in the chromaffin granule membrane.  相似文献   

19.
The voltage-dependent inhibition of single N-type Ca(2+) channels by noradrenaline (NA) and the delta-opioid agonist D-Pen(2)-D-Pen (5)-enkephalin (DPDPE) was investigated in cell-attached patches of human neuroblastoma IMR32 cells with 100 mM Ba(2+) and 5 microM nifedipine to block L-type channels. In 70% of patches, addition of 20 microM NA + 1 microM DPDPE delayed markedly the first channel openings, causing a four- to fivefold increase of the first latency at +20 mV. The two agonists or NA alone decreased also by 35% the open probability (P(o)), prolonged partially the mean closed time, and increased the number of null sweeps. In contrast, NA + DPDPE had little action on the single-channel conductance (19 versus 19.2 pS) and minor effects on the mean open time. Similarly to macroscopic Ba(2+) currents, the ensemble currents were fast activating at control but slowly activating and depressed with the two agonists. Inhibition of single N-type channels was effectively removed (facilitated) by short and large depolarizations. Facilitatory pre-pulses increased P(o) significantly and decreased fourfold the first latency. Ensemble currents were small and slowly activating before pre-pulses and became threefold larger and fast decaying after facilitation. Our data suggest that slowdown of Ca(2+) channel activation by transmitters is mostly due to delayed transitions from a modified to a normal (facilitated) gating mode. This single-channel gating modulation could be well simulated by a Monte Carlo method using previously proposed kinetic models predicting marked prolongation of first channel openings.  相似文献   

20.
The patch clamp technique has been used to study channels in a membrane inside a cell. A single muscle fiber is skinned in relaxing saline (high K+, low Ca2+ with EGTA and ATP), leaving the native sarcoplasmic reticulum (SR) membrane exposed for patching. Fibers are dissected from the second antenna remotor muscles of the American lobster, Homarus americanus. Transmission and scanning electron microscopy confirm the large volume fraction of SR (approximately 70%) and absence of sarcolemma in this unusual skinned preparation. The resting potential of the SR was measured after the resistance of the patch of membrane was broken down. It is near 0 mV (-0.4 +/- 0.6 mV). The average input resistance of the SR is 842 +/- 295 M omega. Some 25% of patches contain a K+-selective channel with a mean open time of seconds and the channel displays at least two conducting states. The open probability is weakly voltage dependent, large at zero and positive potentials (cytoplasm minus SR lumen), and decreasing at negative potentials. The maximal conductance of this channel is 200 +/- 1 pS and the substate conductance is 170 +/- 3 pS in symmetrical 480 mM K+ solution. The current-voltage relation of the open channel is linear over a range of +/- 100 mV. The selectivity is similar to the SR K+ channel of vertebrates: PK/PNa is 3.77 +/- 0.03, determined from reversal potential measurements, whereas gamma K/gamma Na is 3.28 +/- 0.06, determined from open-channel conductance measurements in symmetrical 480 mM solutions. Voltage-dependent block in the lobster SR K+ channel is similar to, but distinct from, that reported for the vertebrate channels. It occurs asymmetrically when hexamethonium is added to both sides of the membrane. The block is more effective from the cytoplasmic side of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号