首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 15 N6-substituted 9-methyladenines have been assessed as antagonists of A2-adenosine receptor-mediated stimulation of adenylate cyclase in membranes of human platelets and rat PC12 cells and of A1-adenosine receptor-mediated inhibition of adenylate cyclases in membranes of rat fat cells and as inhibitors of binding of N6-R-[3H]phenylisopropyladenosine to A1-adenosine receptors in rat brain membranes. N6 substitution can markedly increase the potency of 9-methyladenine at A1 receptors, while having lesser effects or even decreasing potency at A2 receptors. Effects of N6 substituents on adenosine receptor activity of the 9-methyladenines are reminiscent of effects of N6 substituents on activity of adenosine, suggesting that N6 substituted 9-methyladenines bind to adenosine receptors in the same orientation as do N6-substituted adenosines. N6-Cyclopentyl-9-methyladenine with Ki values at the A1 receptors of 1.3 microM (fat cells) and 0.5 microM (brain) is at least 100-fold more potent than 9-methyladenine (Ki 100 microM, both receptors), while at the A2 receptors KB values of 5 microM (platelets) and 25 microM (PC12 cells) make it 5-fold more potent and equipotent, respectively, compared to 9-methyladenine (KB 24 microM, both receptors). N6-Cyclopentyl and several other N6-alkyl and N6-cycloalkyl analogs are selective for A1 receptors while 9-methyladenine is the most A2 receptor selective antagonist. The N6-R- and N6-S-(1-phenyl-2-propyl)-9-methyladenines, analogous to N6-R- and N6-S-phenylisopropyladenosines, exhibit stereoselectivity at both A1 and A2 receptors. Marked differences in potency of certain N6-substituted 9-methyladenines at the A2 receptors of human platelets and rat PC12 cells provide evidence that these are not identical receptors.  相似文献   

2.
This work was designed to characterize the adenosine receptor (A1 or A2) involved in glucagon secretion. The most potent adenosine analogues on A1 receptors are the N6 substituted compounds, among them N6-phenylisopropyladenosine (PIA); furthermore L-PIA is 50 to 100 times more potent than D-PIA on the A1 receptor, whereas it is 3 to 5 times more potent on the A2 receptor; thus the A1 receptor shows a much higher stereoselectivity. The effects of L-PIA and D-PIA were studied on glucagon secretion from the isolated perfused rat pancreas. 1) L-PIA at 1.65 microM induced a transient glucagon secretion which was not greater than that induced by the same concentration of adenosine. 2) D-PIA at a 3 fold higher concentration (4.95 microM) elicited a secretion of glucagon comparable to that induced by L-PIA 1.65 microM; thus the involved receptor does not present a high stereoselectivity for L-PIA. These results support the fact that the receptor involved in glucagon secretion is not of the A1 type.  相似文献   

3.
When Azorhizobium caulinodans was grown in chemostat cultures with N2 as the N source at a constant dilution rate of 0.1 h-1 in media with a constant concentration (50 mM) of succinate and variable concentrations (1.5 to 585 microM) of nicotinate, neither the growth yield on succinate, the specific rate of O2 consumption, nor the specific rate of CO2 production showed linear regression with the concentration of nicotinate. Moreover, for transient continuous cultures in which the nicotinate concentration was gradually lowered, growth parameters remained unchanged until an apparently critical level of 0.7 microM nicotinate was reached. Below this nicotinate level, an immediate washout of the chemostat population began. A. caulinodans nicotinate hydroxylase-negative mutant 61007, unable to catabolize nicotinate, and the wild type behaved similarly. Thus, for continuous cultures supplied with N2 as the N source, submicromolar concentrations of nicotinate both sustained pyridine nucleotide biosynthesis at sufficient levels and precluded the use of nicotinate as a catabolic substrate. Furthermore, when more nicotinate was provided, dual succinate-nicotinate limitation in continuous cultures did not occur. Finally, when nicotinate is present in suboptimal concentrations, the specific growth rate is directly proportional to the amount of nicotinate present per unit of biomass. By contrast, in batch cultures with different nicotinate concentrations and with either succinate or lactate as the carbon and energy source, anomalous growth curves were obtained. With a low concentration (1.5 microM) of nicotinate, growth on N2 occurred, albeit at low rates. With a high concentration (195 microM) of nicotinate, growth on N2 was temporarily stimulated, but nicotinate was quickly exhausted and growth was thereafter nicotinate limited. Continuous supplementation of batch cultures with nicotinate allowed only transient exponential growth followed by linear growth. Thus, also for batch cultures, nicotinate catabolism is dispensable, although a high concentration of nicotinate temporarily stimulates growth on N2. Ut us concluded that A. caulinodans is a true diazotroph.  相似文献   

4.
The Ca2+ accumulating properties of a nonmitochondrial intracellular organelle within cultured N1E-115 neuroblastoma cells containing an (ATP + Mg2+)-dependent Ca2+ pump were recently described in detail (Gill, D. L., and Chueh, S. H. (1985) J. Biol. Chem. 260, 9289-9297). Using both saponin-permeabilized N1E-115 cells and microsomal membranes from cells, this report describes the effectiveness of both inositol 1,4,5-trisphosphate (IP3) and guanine nucleotides in mediating Ca2+ release from this internal organelle, believed to be endoplasmic reticulum. Using permeabilized N1E-115 cells, 2 microM IP3 effects rapid release (t1/2 less than 20 s) of approximately 40% of accumulated Ca2+ releasable with 5 microM A23187. Half-maximal Ca2+ release occurs with 0.5 microM IP3, and maximal release with 3 microM IP3. Using a frozen microsomal membrane fraction isolated from lysed cells, 2 microM IP3 rapidly releases (t1/2 less than 30 s) 10-20% of A23187-releasable Ca2+ accumulated within nonmitochondrial Ca2+-pumping vesicles, although only in the presence of 3% polyethylene glycol (PEG). 10 microM GTP, but not guanosine 5'-(beta, gamma-imido)triphosphate (GMPPNP), increases the extent of release in the presence of IP3. Importantly, however, GTP alone induces a substantial release of Ca2+ (up to 40% of releasable Ca2+) with a t1/2 value (60-90 s) slightly longer than that for IP3. The effects of IP3 and GTP are approximately additive, and both effects require 3% PEG. Half-maximal Ca2+ release occurs with 1 microM GTP, with maximal release at 3-5 microM GTP; 20 microM GMPPNP has no effect on release and only slightly inhibits 5 microM GTP; 20 microM GDP promotes full release, but only after a 90-s lag, and initially inhibits the action of 5 microM GTP. Using permeabilized N1E-115 cells, 5 microM GTP with 3% PEG releases greater than 50% of releasable Ca2+; without PEG, GTP still mediates approximately 30% release of Ca2+ from cells. Neither IP3, GTP, or both together (with or without PEG) effects release of Ca2+ accumulated within synaptic plasma membrane vesicles. The profound effectiveness of GTP on Ca2+ release has important implications for intracellular Ca2+ regulation and is probably related to Ca2+ release mediated by IP3.  相似文献   

5.
Extreme inducibility of spermidine/spermine acetyltransferase (SSAT) by bis-ethyl derivatives of spermine in human large cell lung carcinoma and melanoma cells has prompted biochemical characterization of the purified enzyme. Treatment of human MALME-3 melanoma cells with 10 microM N1,N11-bis(ethyl)norspermine (BENSPM) for 48-72 h increased SSAT activity by some 1000- to 4000-fold and enabled purification of the enzyme by established procedures--binding on immobilized spermine and elution with spermine followed by binding on Matrex Blue A and elution with coenzyme A. The enzyme showed a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a single subunit species and molecular weight of approximately 20,300 Da. By gel permeation chromatography, the holoenzyme was found to have a molecular weight of 80,000 Da, suggesting a total of four identical subunits. Purified SSAT had a specific activity of 285 mumol/min/mg for spermidine and Km values of 5.9 microM for acetylcoenzyme A, 55 microM for spermidine, 5 microM for spermine, 36 microM for N1-acetylspermine, 1.6 microM for norspermidine, and 4 microM for norspermine. Homologs of BENSPM were found to be competitive inhibitors of spermidine acetylation, with Ki values of 0.8 microM for BENSPM, 1.9 microM for N1,N12-bis-(ethyl)spermine and 17 microM for N1,N14-bis-(ethyl)-homospermine. Correlation of these values with the relative abilities of the homologs to increase SSAT in intact cells suggests that formation of an enzyme inhibitor complex may play a contributing role in enzyme induction.  相似文献   

6.
Twenty Azorhizobium caulinodans vector insertion (Vi) mutants unable to catabolize nicotinate (Nic- phenotype) were identified and directly cloned as pVi plasmids. These pVi plasmids were used as DNA hybridization probes to isolate homologous wild-type sequences. From subsequent physical mapping experiments, the nic::Vi mutants defined four distinct loci. Two, possibly three, of these loci are physically linked. A. caulinodans nic loci II and III encode the structural genes for nicotinate catabolism; nic loci I and IV encode nicotinate-driven respiratory chain components. Recombinant lambda bacteriophages corresponding to three of these loci were subcloned in pRK293; resulting plasmids were used for complementation tests with resolved nic::IS50 derivatives of the nic::Vi mutants. When wild-type A. caulinodans was cultured in defined liquid medium under 3% O2, nicotinate catabolism stimulated N2 fixation 10-fold. In these exponentially growing cultures, the entire (300 microM) nicotinate supplement was exhausted within 10 h. While nic::Vi mutants retained the ability to fix some N2, they did so at rates only 10% of that of the wild type: nitrogenase activity by nic::Vi mutants was not stimulated by 300 microM added nicotinate. Higher-level (5 mM) nicotinate supplementation inhibited N2 fixation. Because 5 mM nicotinate repressed nitrogenase induction in all nic::Vi mutants as well, this repression was independent of nicotinate catabolism. During catabolism, nicotinate is first oxidized to 6-OH-nicotinate by a membrane-bound nicotinate hydroxylase which drives a respiratory chain to O2. In A. caulinodans wild-type cultures, added 300 microM 6-OH-nicotinate stimulated N2 fixation twofold better than did added 300 microM nicotinate. Likewise, nic::Vi mutant 61302, defective in nicotinate hydroxylase, fixed N2 at wild-type levels when supplemented with 300 microM 6-OH-nicotinate. Therefore, nicotinate catabolism stimulates N2 fixation not by nicotinate hydroxylase-driven respiration but rather by some subsequent aspect(s) of nicotinate catabolism.  相似文献   

7.
Twenty-seven N,N',N"-trisubstituted thiourea derivatives were prepared. Among them, 1-[3-(4'-hydroxy-3'-methoxy-phenyl)-propyl]-1,3-diphenethyl-thiourea (8l, IC(50)=0.32 microM), showed 2-fold higher antagonistic activity than that of capsazepine (3, IC(50)=0.65 microM) against the vanilloid receptor in a (45)Ca(2+)-influx assay.  相似文献   

8.
Tyrosine hydroxylation was studied in intact cells of mouse neuroblastoma clone N1E-115 which have high levels of tyrosine 3-monooxygenase (EC 1.14.16.2) and which have been fully characterized for tyrosine transport. Measurement of [3H]OH formed from L-[3,5(-3)H]tyrosine in the medium was the method of assay and [3H]OH formed was stoichiometric with the formation of L-[3H]3,4-dihydroxyphenylalanine. Tyrosine hydroxylation was dependent on time of incubation, cell number, and the concentration of [3H]tyrosine in the medium. From velocity vs. [3H]tyrosine concentration experiments, two apparent Km values were obtained: Km1 = 10 +/- 2 microM; Km2 = 140 +/- 10 microM. Substrate inhibition occurred with tyrosine concentrations between 20 and 50 microM. The reaction was twice as fast at pH 5.5 as at pH 7.4. alpha,alpha'-Dipyridyl (1 mM) caused major inhibition (75%) when [3H]tyrosine concentration was 10 microM. L-3-Iodotyrosine was a competitive inhibitor with Ki = 0.3 microM. Dopamine was a non-competitive inhibitor with Ki = 500 microM. 1-Norepinephrine had no effect. These results show that the hydroxylation of tyrosine by living N1E-115 cells has many of the properties of the reaction catalyzed by purified tyrosine 3-monooxygenase from normal tissue.  相似文献   

9.
The nickel and cobalt resistance plasmid pMOL28 was transferred by conjugation from its natural host Alcaligenes eutrophus CH34 to the susceptible A. eutrophus N9A. Strain N9A and its pMOL28-containing transconjugant M220 were studied in detail. At a concentration of 3.0 mM NiCl2, the wild-type N9A did not grow, while M220 started to grow at its maximum exponential growth rate after a lag of 12 to 24 h. When grown in the presence of subinhibitory concentrations (0.5 mM) of nickel salt, M220 grew actively at 3 mM NiCl2 without a lag, indicating that nickel resistance is an inducible property. Expression of nickel resistance required active growth in the presence of nickel salts at a concentration higher than 0.05 mM. Two mutants of M220 were isolated which expressed nickel resistance constitutively. When the plasmids, pMOL28.1 and pMOL28.2, carried by the mutants were transferred to strains H16 and CH34, the transconjugants expressed constitutive nickel resistance. This indicates that the mutation is plasmid located. Both mutants expressed constitutive resistance to nickel and cobalt. Physiological studies revealed the following differences between strain N9A and its pMOL28.1-harboring mutant derivatives. (i) The uptake of 63NiCl2 occurred more rapidly in the susceptible strain and reached a 30- to 60-fold-higher amount that in the pMOL28.1-harboring mutant; (ii) in intact cells of the susceptible strain N9A, the cytoplasmic hydrogenase was inhibited by 1 to 5 nM NiCl2, whereas 10 mM Ni2+ was needed to inhibit the hydrogenase of mutant cells; (iii) the minimal concentration of nickel chloride for the derepressed synthesis of cytoplasmic hydrogenase was lower in strain N9A (1 to 3 microM) than in the constitutive mutant (8 to 10 microM).  相似文献   

10.
N,N-Dicinnamyl, N-benzyl-N-cinnamyl, and N,N-dibenzyl amino acids were prepared and evaluated in an EPO binding assay. Several derivatives of aspartic acid, glutamic acid, and lysine exhibited moderate (10-50 microM) affinity for EBP; 'dimerization' of the most potent analogues by coupling with linear diamines led to EPO competitors having 1-2 microM binding affinities.  相似文献   

11.
The significance of DNA ethylation at the central hydrogen-bonding site (N3) of thymine was investigated using an in vitro DNA replication system. The system utilized a primed template in which the 3'-end of the primer is eight nucleotides away from N3-ethyldeoxythymidine (N3-Et-dT), present at template position 26 from the 3'-end. The 34-nucleotide template corresponds to a specific DNA sequence at gene G of bacteriophage phi X174. DNA synthesis products were quantitated by electrophoretic separation and autoradiography. At 10 microM dNTP and 0.5 mM Mn2+, N3-Et-dT blocked DNA synthesis by Escherichia coli polymerase I (Klenow fragment): 60% after incorporating a nucleotide opposite N3-Et-dT (incorporation-dependent blocked product) and 39% 3' to N3-Et-dT. DNA replication past the lesion (post-lesion synthesis) was negligible. Post-lesion synthesis increased using higher concentrations of dNTP, reaching 68% at 200 microM dNTP. DNA sequencing revealed that dA was incorporated opposite N3-Et-dT in the incorporation-dependent blocked product. In the post-lesion synthesis product, dT was exclusively incorporated opposite N3-Et-dT. Formation of the N3-Et-dT.dA base pair at the replication fork terminated DNA synthesis, while the N3-Et-dT.dT base pair formed at the 3'-end of the growing chain was extended, leading to an A.T----T.A transversion mutation. The results suggest a dual role for the N3-Et-dT lesion, contributing in part to the cytotoxicity and mutagenicity of ethylating agents. These studies provide a basis for understanding the activation of oncogene neu by A.T----T.A transversion mutation in rat neuroblastomas induced by N-ethyl-N-nitrosourea.  相似文献   

12.
A new vanadyl complex with the formula VO(L1)2, where L1=3-amino-6(7)-chloroquinoxaline-2-carbonitrile N(1), N(4)-dioxide, has been synthesized and characterized by elemental analyses, conductometry, fast atom bombardment mass spectroscopy (FAB-MS) and electronic, Fourier transform infrared (FTIR), Raman, nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. Results were compared with those previously reported for analogous vanadium complexes with other 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives as ligands. As an effort to develop novel metal-based selective hypoxia-cytotoxins and to improve bioavailability and pharmacological and toxicological properties of aminoquinoxaline carbonitrile N-dioxides bioreductive prodrugs, the new complex and VO(L)2 complexes, with L=3-amino-6(7)-bromoquinoxaline-2-carbonitrile N1,N4-dioxide (L2) and 3-amino-6(7)-methylquinoxaline-2-carbonitrile N1,N4-dioxide (L3), were subjected to cytotoxic evaluation in V79 cells in hypoxic and aerobic conditions. The complexes resulted in vitro more potent cytotoxins than the free ligands (i.e. potencies P(VO(L1)2)=3.0, P(L1)=9.0 microM) and Tirapazamine (P=30.0 microM) and showed excellent selective cytotoxicity in hypoxia, being no cytotoxic in oxia. In addition, the solubility in hydrophilic solvents resulted significantly higher for the vanadyl complexes than for the free ligands. These results could be indicative that complexation of the quinoxaline-2-carbonitrile N1,N4-dioxide derivatives with vanadium could improve their bioavailability. In addition, a new aspect of the series has been investigated. A detailed comparison of the electrochemical behavior of the free ligands and the complexes has been performed searching for a correlation between reduction potentials of the complexes and their activities and hypoxia selectivities.  相似文献   

13.
A series of N, N- disubstituted piperazines and homopiperazines were prepared and evaluated for binding to natural alpha4beta2* and alpha7* neuronal nicotinic acetylcholine receptors (nAChRs) using whole brain membrane. Some compounds exhibited good selectivity for alpha4beta2* nAChRs and did not interact with the alpha7* nAChRs subtype. The most potent analogs were compounds 8-19 (K(i) = 10.4 microM), 8-13 (K(i) = 12.0 microM), and 8-24 (K(i) = 12.8 microM). Thus, linking together a pyridine pi-system and a cyclic amine moiety via a homopiperazine ring affords compounds with low affinity but with good selectivity for alpha4beta2* nAChRs.  相似文献   

14.
Thyrotropin-releasing hormone (TRH) analogues in which the N(1)-position of the imidazole ring of the centrally placed histidine residue is substituted with various alkyl groups were synthesized and studied as agonists for TRH receptor subtype 1 (TRH-R1) and subtype 2 (TRH-R2). Analogue 3 (R=C2H5) exhibited binding affinity (Ki) of 0.012 microM to TRH-R1 that is about 1.1-fold higher than that of TRH. Several analogues were found to selectively activate TRH-R2 with greater potency than TRH-R1. The most selective agonist of the series 5 [R=CH(CH3)2] was found to activate TRH-R2 with a potency (EC50) of 0.018 microM but could only activate TRH-R1 at EC50 value of 1.6 microM; that is, exhibited 88-fold greater potency for TRH-R2 versus TRH-R1. The results of this study indicate that modulation of central histidine residue is important for designing analogues which were selective agonist at TRH receptor subtypes.  相似文献   

15.
(1) The synthesis of the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl- 4,4'-diaminostilbene-2,2'-disulphonate (TBenzDS) is described, and its interaction with the lactate transporter and band 3 protein of erythrocytes investigated. At 10% haematocrit the IC50 (concn. required for 50% inhibition) for inhibition of transport of 0.5 mM L-lactate into rat erythrocytes at 7 degrees C was approx. 1.6 microM, as low as any other inhibitor of the transporter. In human erythrocytes at 10% haematocrit the IC50 value was increased from approx. 3 microM to 9 microM upon raising the temperature from 7 degrees C to 25 degrees C. (2) TBenzDS inhibited transport of L-lactate into rat erythrocytes in a manner that was competitive with the substrate, as is the case for some other stilbene disulphonate derivatives (Poole, R.C. and Halestrap, A.P. (1991) Biochem. J. 275, 307-312). (3) Increasing the haematocrit from 5 to 20% caused a 3-fold increase in the IC50 value for inhibition of L-lactate transport in rat erythrocytes. (4) TBenzDS was found to bind to erythrocyte membranes, with a partition coefficient (Pm) of 6000-7000 under all conditions tested. (5) TBenzDS also inhibited band 3-mediated sulphate transport in rat erythrocytes; 50% inhibition required approx. 2.5 microM TBenzDS for cells at 10% haematocrit. (6) TBenzDS is fluorescent, and an enhancement of this fluorescence occurs upon addition of BSA or erythrocyte membranes. The fluorescence enhancement caused by erythrocyte membranes is due to binding of the inhibitor to the band 3 protein at the same site as the stilbenedisulphonate 4,4'-diisothiocyanodihydrostilbene-2,2'-disulphonate (H2DIDS).  相似文献   

16.
A series of L-alanyl-4 or 5-substituted L-prolines, such as L-alanyl-L-thiazolidine-4-carboxylic acid, L-alanyl-5-oxo-L-proline, L-alanyl-trans-4-hydroxy-L-proline and L-alanyl-cis-4-hydroxy-L-proline as well as their corresponding N alpha-phosphoryl derivatives, were synthesized and studied for inhibition against angiotensin converting enzyme. Furanacryloyl-phenylalanyl-glycyl-glycine was used as substrate in 50 mM Tris hydrochloride buffer at pH 7.5 containing 1 microM zinc acetate. N alpha-Phosphoryl-L-alanyl-L-thiazolidine-4-carboxylic acid and N alpha-phosphoryl-L-alanyl-trans-4-hydroxy-L-proline competitively inhibit angiotensin converting enzyme with Ki values of 68 microM and 89.3 microM, respectively. Smaller inhibition against angiotensin converting enzyme was obtained with the rest of compounds studied here.  相似文献   

17.
White C  McGeown G 《Cell calcium》2002,31(4):151-159
We describe experiments in which the low affinity indicator Oregon Green BAPTA 5N was used to record the spatially resolved changes in [Ca(2+)] from intracellular stores in rat gastric myocytes. Cells were loaded with the membrane permeant form of the indicator and imaged using a confocal scanning laser microscope. In doubly stained cells the Oregon Green signal colocalized with BIODIPY 558/568 Brefeldin A, a label for the endo/sarcoplasmic reticulum (SR) and Golgi apparatus. Oregon Green BAPTA 5N was calibrated in gastric myocytes, giving an in situ K(d) of 90 microM. The resting free [Ca(2+)] within the SR averaged 65 microM. A reversible decrease in Oregon Green fluorescence was observed on bath application of Inositol triphosphate (IP(3)) (10 microM) to permeabilized cells. Similar changes were also observed when cyclopiazonic acid (5 microM) was applied to intact myocytes, again with recovery of store [Ca(2+)] following drug washout. Identical patterns of Ca(2+) depletion were seen when caffeine (1 microM) and carbachol (10 microM) were applied sequentially to the same cells, suggesting that activation of ryanodine and IP(3)-sensitive channels can result in the release of Ca(2+) from the same regions of the SR.  相似文献   

18.
The inhibitory effects of 7-[N-(3-aminopropyl)amino]heptan-2-one (APAH) on N8-acetylspermidine deacetylation were studied. In in vitro studies, APAH produced inhibition (apparent Ki of 0.18 microM) of N8-acetylspermidine deacetylation by the 100,000g supernatant fraction of rat liver. This apparent Ki was 60-fold less than the apparent Km (11 microM) for deacetylation of the substrate, N8-acetylspermidine, suggesting that APAH could be a potent, effective inhibitor in vivo. APAH was administered to mice by intraperitoneal injection at a dose of 200 mg/kg, and polyamine and acetylpolyamine levels in liver and spleen were measured. In tissues of control mice, N8-acetylspermidine was not detectable but increased to detectable levels 30-360 min after APAH treatment. These data are consistent with inhibition of the deacetylase by APAH. Increases in putrescine and N1-acetylspermidine levels occurred in liver after APAH treatment with increases in N1-acetylspermidine levels observed in spleen. In HeLa cells, a significant increase in N8-acetylspermidine was observed following 24 h exposure to 10 microM APAH while no change occurred in the acetylation level of HeLa cell histones. In contrast, 24 h exposure to 10 mM sodium butyrate produced no change in N8-acetylspermidine levels and an increase in the acetylation level of histones H4 and H2B. These results suggest that APAH has a relatively selective inhibitory effect on N8-acetylspermidine but not histone deacetylation. This is the first report of significant levels of N8-acetylspermidine in animal tissues and of the effects of in vivo inhibition of N8-acetylspermidine deacetylase.  相似文献   

19.
N-[N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithinyl]-L-phenylalanine (1), a carboxypeptidase A (CPA) cleavable prodrug was synthesized for use in an antibody directed strategy to improve the therapeutic selectivity of N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (2), an extremely potent nonpoly-glutamatable DHFR inhibitor which is also highly cytotoxic. Compound 1 was shown by HPLC analysis to give a >99% yield of 2 upon incubation with bovine CPA (bCPA) for 20 min at 25 degrees C. In a spectrophotometric kinetic assay with 50 microM dihydrofolate as the competing substrate in the presence of 65 microM NADPH, 1+bCPA stoichiometrically inhibited recombinant human DHFR (rhDHFR) with a K(i) of 0.35 pM. In contrast, 1 without bCPA was a poor inhibitor of rhDHFR (K(i)>10 microM). In a 72 h growth inhibition assay against cultured CCRF-CEM human leukemic lymphoblasts, the growth inhibitory activities of 1+bCPA, 2+bCPA, and 2 alone were the same (IC(50) 1.3-1.4 nM), whereas 1 in the absence of bCPA was >100-fold less potent (IC(50) 155 nM).  相似文献   

20.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号