首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.  相似文献   

2.
3.
4.
The protein composition of sarcoplasmic-reticulum vesicles, either unpurified or after fractionation on sucrose gradients, and with or without previous osmotic shock and sonication, was investigated by electrophoresis in acid polyacrylamide gels. The pattern of release of loosely bound proteins is discussed with respect to their localization in the interior of the vesicles.  相似文献   

5.
6.
7.
Three groups of proteins can be clearly discriminated in the total protein of L cell polysomes by selective labelling in the presence of low doses of actinomycin D and two-dimensional polyacrylamide/dodecylsulfate gel electrophoresis followed by autoradiography: (a) structural ribosomal proteins which are not labelled in the presence of actinomycin D and form stained non-radioactive spot in gels; (b) exchangeable ribosomal proteins which are labelled in the presence of actinomycin D and stained radioactive spots; (c) non-ribosomal proteins which are detectable only by autoradiography of gels. The large and small subunits of L cell ribosomes contain respectively 45 and 34 ribosomal proteins with molecular weights less than or equal to 50 000; seven of the large subunit proteins and nine of the small subunit proteins are exchangeable. Most of the non-ribosomal proteins migrate in the region of the related to the separation of the ribosomal proteins of mammalian cells and the possible significance of the presence of non-ribosomal proteins in polysomes are discussed.  相似文献   

8.
9.
Nuclear proteins which are extractible with 0. 35 M NaCl and the nonhistone chromosomal proteins which are not soluble at this salt concentration separate on analytical polyacrylamide gel electrophoresis into the same 11 main fractions. Only one fraction (less than 7% of the total proteins) is specific for the nonhistone chromosomal proteins and is not found among the proteins soluble in 0. 35 M NaCl.  相似文献   

10.
11.
Ezrin and radixin and protein 4.1 were detected in the lens of the eye. These proteins were mainly present in the young elongating cortical fiber cells and localized to the plasma membranes. Moesin was not detected. Ezrin, radixin, and protein 4.1 provide another means whereby actin is linked to the plasma membrane in addition to the known adherens junctions in the lens.  相似文献   

12.
13.
14.
15.
Matrix proteins of the skeleton   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
Ribosomal proteins in the spotlight   总被引:1,自引:0,他引:1  
The assignment of specific ribosomal functions to individual ribosomal proteins is difficult due to the enormous cooperativity of the ribosome; however, important roles for distinct ribosomal proteins are becoming evident. Although rRNA has a major role in certain aspects of ribosomal function, such as decoding and peptidyl-transferase activity, ribosomal proteins are nevertheless essential for the assembly and optimal functioning of the ribosome. This is particularly true in the context of interactions at the entrance pore for mRNA, for the translation-factor binding site and at the tunnel exit, where both chaperones and complexes associated with protein transport through membranes bind.  相似文献   

18.
How proteins enter the nucleus   总被引:127,自引:0,他引:127  
P A Silver 《Cell》1991,64(3):489-497
Nuclear protein import is a selective process. Proteins destined for the nucleus contain NLSs. These short stretches of amino acids interact with proteins located in the cytoplasm, on the nuclear envelope, and/or at the nuclear pore complex. Following binding at the pore complex, proteins are translocated through the pore into the nucleus in a manner requiring ATP. The biochemical dissection of the nuclear pore complex has begun. Alteration of protein import into the nucleus is emerging as a new and complex form of regulation. However, we are left with the following problems: How do proteins move through the cytoplasm to reach the nuclear pore? How does the nuclear pore complex open and close in a selective manner? How is ATP utilized during import? And finally, how is bi-directional traffic of both proteins and RNA through the pore regulated?  相似文献   

19.
20.
On the aminoethylation of proteins   总被引:20,自引:0,他引:20  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号