首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V. cholerae strain O395 in Escherichia coli to homogeneity and determined its biological activity. The unfolding of the purified protein was investigated using circular dichroism and intrinsic tryptophan fluorescence. Because Ace is predominantly a hydrophobic protein, the degree of exposure of hydrophobic regions was identified from the spectral changes of the environment-sensitive fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) that quenches the fluorescence of tryptophan residues of Ace in a concentration-dependent manner. Results showed that bis-ANS binds one monomeric unit of Ace with a 1:1 stoichiometry and a K' of 0.72 μM. Ace exists as a dimer, with higher oligomeric forms appearing upon glutaraldehyde cross-linking. This study also reports the binding of virstatin, a small molecule that inhibits virulence regulation in V. cholerae, to Ace. The binding constant (K=9×10(4) M(-1)) and the standard free energy change (ΔG°=-12 kcal mol(-1)) of Ace-virstatin interaction have been evaluated by the fluorescence quenching method. The binding does not affect the oligomeric status of Ace. A cell viability assay of the antibacterial activity of Ace has been performed using various microbial strains. A homology model of Ace, consistent with the experimental results, has been constructed.  相似文献   

2.
Abstract: A cDNA for Drosophila choline acetyltransferase (EC 2.3.1.6; ChAT) was fused with a polyhistidine sequence and expressed in Escherichia coli. The recombinant enzyme was purified to a specific activity of 500 μmol/min/mg of protein using metal affinity chromatography and ion exchange chromatography. Kinetic properties of the recombinant enzyme did not differ significantly from those previously determined. Circular dichroism (CD) spectra revealed that the secondary structure of the enzyme is largely μ-helical. Intrinsic fluorescence spectra of the enzyme indicate that its tryptophan residues are buried. Neither CD nor fluorescence spectra changed significantly in the presence of substrates. The cysteine content of the recombinant Drosophila ChAT was determined to be 16 in the absence and 22 in the presence of 6 M guanidine hydrochloride. Finally, crystallization of recombinant Drosophila ChAT was achieved.  相似文献   

3.
Pyridoxal kinase has been purified 2,000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Pyridoxal kinase, 60,000 molecular weight, catalyzes the phosphorylation of pyridoxal (Km = 2.5 x 10(-5) M) and pyridoxine (Km = 1.7 x 10(-5) M). Pyridoxamine is not a substrate of the purified kinase. Irradiation of the kinase in the presence of riboflavin leads to irreversible loss of catalytic activity. Riboflavin binds to the kinase with a KD = 5 microM as shown by fluorometric titrations. Singlet excited oxygen, generated by energy transfer from the lowest triplet of riboflavin to oxygen, acts as the oxidizing agent of approximately one histidine residue per mol of enzyme. The amino acid residues tyrosine, tryptophan, and cysteine are not photooxidized by the sensitizer bound to the enzyme. It is postulated that histidine is involved in the binding of the substrate ATP to the catalytic site of pyridoxal kinase.  相似文献   

4.
Abstract The outer membrane (OM) protein components of a Vibrio cholerae O1 and four V. cholerae O139 strains, collected from cholera patients, were analysed by SDS-PAGE. A protein of 69 kDa molecular mass was observed only when the OMPs were prepared from strains grown in synthetic broth. As a result of passage in the rabbit ileal loop (RIL), virulence was enhanced, and a protein component around 18 kDa of the V. cholerae O139 OM became the major protein component. On immunoblot analysis with rabbit antiserum against V. cholerae O139 OM, it was shown that, apart from the major protein component of V. cholerae O1 OM of around 45 kDa and that of V. cholerae O139 OM of around 38 kDa, all other minor protein components were cross-reactive between the two serogroups. In immunoblot assays with convalescent sera obtained from V. cholerae O139-infected patients, it was observed that in addition to the lipopolysaccharide (LPS)-induced antibody, only the 38 kDa major protein component elicited considerable levels of antibody in the pateint. Minor OM components of 18 kDa were detected in the immunoblot analysis by LPS-directed antibody, however, as the OM proteins are known to be associated with LPS.  相似文献   

5.
We report the molecular cloning and functional characterization of a novel member of the CD38 family of cyclic ADP-ribose (cADPr)-generating cyclases. We cloned a cDNA insert that encoded a 298-amino-acid-long protein (M(w) approximately 39 kDa). The predicted protein displayed 69, 61, and 58% similarity, respectively, to mouse, rat, and human CD38. Rabbit CD38 was also 28% homologous to Aplysia ADP-ribosyl cyclase and leukocyte CD157 (another ADP-ribosyl cyclase); the three cyclases shared 10 cysteine and 2 adjacent proline residues. We then transfected CD38-negative NIH3T3 cells with cDNA encoding a CD38-EGFP fusion protein. Epifluorescence microscopy showed intense EGFP fluorescence confirming CD38 expression. We finally confirmed the ADP-ribosyl cyclase activity of the expressed CD38 by measuring its ability to catalyze the cyclization of the nicotinamide adenine dinucleotide (NAD(+)) surrogate, NGD(+), to its fluorescent nonhydrolyzable derivative, cGDPr.  相似文献   

6.
Hydrogenase enzyme from the unicellular marine green alga Tetraselmis kochinensis NCIM 1605 was purified 467 fold to homogeneity. The molecular weight was estimated to be approximately 89kDa by SDS-PAGE. This enzyme consists of two subunits with molecular masses of approximately 70 and approximately 19kDa. The hydrogenase was found to contain 10g atoms of Fe and 1g of atom of Ni per mole of protein. The specific activity of hydrogen evolution was 50micromol H(2)/mg/h of enzyme using reduced methyl viologen as an electron donor. This hydrogenase enzyme has pI value approximately 9.6 representing its alkaline nature. The absorption spectrum of the hydrogenase enzyme showed an absorption peak at 425nm indicating that the enzyme had iron-sulfur clusters. The total of 16 cysteine residues were found per mole of enzyme under the denaturing condition and 20 cysteine residues in reduced denatured enzyme indicating that it has two disulfide bridges.  相似文献   

7.
Vibrio cholerae utilizes mannitol through an operon of the phosphoenolpyruvate-dependent phosphotransferase (PTS) type. A gene, mtlD, encoding mannitol-1-phosphate dehydrogenase was identified within the 3.9 kb mannitol operon of V. cholerae. The mtlD gene was cloned from V. cholerae O395, and the recombinant enzyme was functionally expressed in E. coli as a 6×His-tagged protein and purified to homogeneity. The recombinant protein is a monomer with a molecular mass of 42.35 kDa. The purified recombinant MtlD reduced fructose 6-phosphate (F6P) using NADH as a cofactor with a K(m) of 1.54 +/- 0.1 mM and V(max) of 320.8 +/- 7.81 micronmol/min/mg protein. The pH and temperature optima for F6P reduction were determined to be 7.5 and 37°C, respectively. Using quantitative real-time PCR analysis, mtlD was found to be constitutively expressed in V. cholerae, but the expression was up-regulated when grown in the presence of mannitol. The MtlD expression levels were not significantly different between V. cholerae O1 and non-O1 strains.  相似文献   

8.
The major toxin, a necrotoxin, of the venom of Dugesiella hentzi (Girard) has been purified by gel filtration. The purified toxin was homogeneous by gel filtration, polyacrylamide gel electrophoresis, and an isoelectric focusing procedure. The molecular weight estimation was 6700 and the isoelectric pH was 10.0. The amino acid composition shows 16 lysine, 8 cysteine, and one tryptophan residues, with no tyrosine, methionine, alanine, arginine, or histidine residues. The purified protein is toxic to certain insects and mice with the primary site of action being muscle tissue in the mouse. Modification of the single tryptophan residue resulted in a loss of toxicity.A significant increase of serum creatine phosphokinase activity was observed in mice injected with the necrotoxin. Histological examination showed the primary lesions were acute focal areas of myocardial necrosis, and no histological differences in myocardial lesions were seen between mice injected with the purified necrotoxin or with the whole venom.  相似文献   

9.
The rat cytosolic glutathione S-transferase Ya subunit contains three histidine residues (at positions 8, 143, and 159), two cysteine residues (at positions 18 and 112), and a single tryptophan residue (at position 21). Histidine, cysteine, and tryptophan have been proposed to be present either near or at the active site of other glutathione S-transferase subunits. The functional role of these amino acids at each of the positions was evaluated by site-directed mutagenesis in which valine or asparagine, alanine, and phenylalanine were substituted for histidine, cysteine, and tryptophan, respectively. Mutant enzymes H8V, H143V, H159N, C112A, and W21F retained either full or better catalytic efficiencies (k(cat)/Km) toward 1-chloro-2,4-dinitrobenzene and glutathione. Lower but significant k(cat)/Km values were observed for H159V and C18A toward 1-chloro-2,4-dinitrobenzene. Some mutants displayed different thermal stabilities and intrinsic fluorescence intensities, but all retained the ability to bind heme. These results indicate that histidine, cysteine, and tryptophan in the glutathione S-transferase Ya subunit are not essential for catalysis nor are they involved in the binding of heme to the YaYa homodimer.  相似文献   

10.
A lectin was isolated from the saline extract of Erythrina speciosa seeds by affinity chromatography on lactose-Sepharose. The lectin content was about 265 mg/100g dry flour. E. speciosa seed lectin (EspecL) agglutinated all human RBC types, showing no human blood group specificity; however a slight preference toward the O blood group was evident. The lectin also agglutinated rabbit, sheep, and mouse blood cells and showed no effect on horse erythrocytes. Lactose was the most potent inhibitor of EspecL hemagglutinating activity (minimal inhibitory concentration (MIC)=0.25 mM) followed by N-acetyllactosamine, MIC=0.5mM, and then p-nitrophenyl alpha-galactopyranoside, MIC=2 mM. The lectin was a glycoprotein with a neutral carbohydrate content of 5.5% and had two pI values of 5.8 and 6.1 and E(1%)(1 cm) of 14.5. The native molecular mass of the lectin detected by hydrodynamic light scattering was 58 kDa and when examined by mass spectroscopy and SDS-PAGE it was found to be composed of two identical subunits of molecular mass of 27.6 kDa. The amino acid composition of the lectin revealed that it was rich in acidic and hydroxyl amino acids, contained a lesser amount of methionine, and totally lacked cysteine. The N-terminal of the lectin shared major similarities with other reported Erythrina lectins. The lectin was a metaloprotein that needed both Ca(2+) and Mn(2+) ions for its activity. Removal of these metals by EDTA rendered the lectin inactive whereas their addition restored the activity. EspecL was acidic pH sensitive and totally lost its activity when incubated with all pH values between pH 3 and pH 6. Above pH 6 and to pH 9.6 there was no effect on the lectin activity. At 65 degrees C for more than 90 min the lectin was fairly stable; however, when heated at 70 degrees C for 10 min it lost more than 80% of its original activity and was totally inactivated at 80 degrees C for less than 10 min. Fluorescence studies of EspecL indicated that tryptophan residues were present in a highly hydrophobic environment, and binding of lactose to EspecL neither quenched tryptophan fluorescence nor altered lambda(max) position. Treating purified EspecL with NBS an affinity-modifying reagent specific for tryptophan totally inactivated the lectin with total modification of three tryptophan residues. Of these residues only the third modified residue seemed to play a crucial role in the lectin activity. Addition of lactose to the assay medium did not provide protection against NBS modification which indicated that tryptophan might not be directly involved in the binding of haptenic sugar D-galactose. Modification of tyrosine with N-acetylimidazole led to a 50% drop in EspecL activity with concomitant acetylation of six tyrosine residues. The secondary structure of EspecL as studied by circular dichroism was found to be a typical beta-pleated-sheet structure which is comparable to the CD structure of Erythrina corallodendron lectin. Binding of lactose did not alter the EspecL secondary structure as revealed by CD examination.  相似文献   

11.
Plasminogen activator inhibitor 1 harbors four tryptophan residues at positions 86, 139, 175, and 262. To investigate the contribution of each tryptophan residue to the total fluorescence and to reveal the mutual interactions of the tryptophan residues and interactions with the other amino acids, 15 mutants in which tryptophan residues have been replaced by phenylalanines were constructed, purified, and characterized. Conformational distribution analysis revealed that the tryptophan mutants have a similar conformational distribution pattern as wild-type plasminogen activator inhibitor 1. Mutants in which tryptophan residue 175 was replaced by a phenylalanine displayed an increased functional half-life of the active conformation, whereas the functional half-life of mutants in which tryptophan residue 262 was replaced by a phenylalanine was substantially decreased. Comparative analysis of the fluorescence lifetimes, the extinction coefficients, and the quantum yields of the individual tryptophan residues demonstrates that tryptophan residue 262 gives the highest contribution to the total fluorescence. The other tryptophan residues have a very low quantum yield. In the wild-type protein, the fluorescence of all tryptophan residues is partially quenched as compared to the mutants that contain single tryptophan residues, due to conformational effects. The fluorescence of tryptophan residue 262 is very likely also partially quenched by energy transfer to tryptophan residue 175.  相似文献   

12.
Chemical modification of tryptophan residues in abrin-a with N-bromosuccinimide (NBS) was studied with regard to saccharide-binding. The number of tryptophan residues available for NBS oxidation increased with lowering pH, and 11 out of the 13 tryptophan residues in abrin-a were eventually modified with NBS at pH 4.0, while 6 tryptophan residues were modified at pH 6.0 in the absence of specific saccharides. Modification of tryptophan residues at pH 6.0 greatly decreased the saccharide-binding ability of abrin-a, and only 2% of the hemagglutinating activity was retained after modification of 3 residues/mol. When the modification was done in the presence of lactose or galactose, 1 out of 3 residues/mol remained unmodified with a retention of a fairly high hemagglutinating activity. However, GalNAc did not show such a protective effect. NBS-oxidation led to a great loss of the fluorescence of abrin-a, and after modification of 3 tryptophan residues/mol, the fluorescence intensity at 345 nm was only 38% of that of the unmodified abrin-a. The binding of lactose to abrin-a altered the environment of the tryptophan residue at the saccharide-binding site of abrin-a, leading to a blue shift of the fluorescence spectrum. The ability to generate such fluorescence spectroscopic changes induced by lactose-binding was retained in the derivative in which 2 tryptophan residues/mol were oxidized in the presence of lactose, but not in the derivative in which 3 tryptophan residues/mol were oxidized in the absence of lactose. Importance of the tryptophan residue(s) in the saccharide-binding of abrin-a is suggested.  相似文献   

13.
Modification of tryptophan residues in castor bean hemagglutinin (CBH) with N-bromosuccinimide (NBS) was investigated in detail. Tryptophan residues accessible to NBS increased with lowering pH and six tryptophan residues/mol were oxidized at pH 3.0, while two tryptophan residues/mol were oxidized at pH 5.0. From the pH-dependence curve for tryptophan oxidation, we suggest that the extent of modification of tryptophan in CBH is influenced by an ionizable group with pKa = 3.6. The saccharide-binding activity was decreased greatly by modification of tryptophan concomitantly with a loss of fluorescence. A loss of the saccharide-binding activity was found to be principally due to the modification of two tryptophan residues/mol located on the surface of the protein molecule. In the presence of raffinose, two tryptophan residues/mol remained unmodified with retention of fairly high saccharide-binding activity. The results suggest that one tryptophan residue is involved in each saccharide-binding site on each B-chain of CBH.  相似文献   

14.
A photosystem I (PS-I) preparation from barley (Hordeum vulgare L.) containing the reaction center protein P700-chlorophyll a-protein 1 (CP1) and smaller polypeptides with apparent molecular masses of 18, 16, 14, 9.5, 9, 4, and 1.5 kDa has been analyzed with respect to subunit stoichiometry. CP1 contains two homologous subunits with approximate masses of 82 kDa. CP1 and the smaller polypeptides were isolated, and the amino acid composition of each component and of the PS-I preparation was determined. Based on the amino acid composition data and the determined ability of each isolated polypeptide to bind Coomassie Brilliant Blue, the PS-I complex is shown to contain 1 mol of each of the homologous 82-kDa polypeptides as well as 1 mol of the 18-, 16-, 9.5-, and 9-kDa polypeptides for each mol of P700. The total polypeptide mass of the PS-I complex is 209 kDa excluding tryptophan and approximately 220 kDa including tryptophan. The two 82-kDa subunits present/P700 provide cysteine residues for binding only one Fe-S center. In conjunction with the earlier reported binding of four iron and four acid-labile sulfides to CP1/P700 (H?j, P. B., Svendsen, I., Scheller, H. V., and M?ller, B. L. (1987) J. Biol. Chem. 262, 12676-12684), this demonstrates the center X is a [4Fe-4S] cluster and eliminates the possibility of center X being composed of two [2Fe-2S] clusters.  相似文献   

15.
F Simeoni  L Masotti  P Neyroz 《Biochemistry》2001,40(27):8030-8042
Site-directed mutagenesis, gel filtration, and fluorescence spectroscopy approaches were used to study the molecular hinge mechanism involved in the beta-strand-exchanged dimer formation of the cyclin-dependent protein kinase regulatory subunit p13(suc1) from Schizosaccharomyces pombe. Single and double mutants of residues Pro-90 and Pro-92 (P90V, P92V, and P90V/P92V) were prepared and assayed. Substitution of Pro-90 prevented dimer formation by arm exchange. However, single point mutations did not affect the two-state unfolding transition of wild-type p13(suc1) at equilibrium (i.e., wild type, DeltaG degrees (0,un) = 7.38 +/- 0.35 kcal mol(-1), vs P90V, DeltaG degrees (0,un) = 6.71 +/- 0.18 kcal mol(-1)). On the contrary, the double mutant unfolded with a complex transition, and the reaction was best described by a three-state model (N <==> I <==> U). Resolution of the state-dependent (native vs denatured) intrinsic fluorescence decay amplitudes of p13(suc1) showed that with P90V/P92V these parameters were affected at [GuHCl] significantly less than with wild-type and single mutant proteins. Moreover, with the latter products, fluorescence quenching measurements at 1 M GuHCl revealed linear Stern-Volmer plots with quenching constants typical of tryptophan residues located in a native environment (1.6 M(-1) < K(SV) < 2.3 M(-1)). Dissimilarly, with P90V/P92V a significant deviation from linearity of the Stern-Volmer plot was obtained. Nonlinear least-squares analysis of these data resolved the significant contribution of highly solvent-accessible emitting species (K(SV) = 26 M(-1)) consistent with large exposure of the tryptophan residues. These results are compatible with the existence of an intermediate unfolding state of the double mutation product. Thus, while single residue substitution studies give support to the primary role of Pro-90 in the p13(suc1) dimer formation by domain swapping, double residue substitution studies indicate the important role of the conserved repeat, Pro-x-Pro, for the proper beta-strand spatial organization and stability.  相似文献   

16.
The E. coli ada+ gene product that controls the adaptive response to alkylating agents has been purified to apparent homogeneity using an overproducing expression vector system. This 39 kDa protein repairs 0(6)-methylguanine and 0(4)-methylthymine residues in alkylated DNA by transfer of the methyl group from the base to a cysteine residue in the protein itself. The Ada protein also corrects one of the stereoisomers of methyl phosphotriesters in DNA by the same mechanism, while the other isomer is left unrepaired. Different cysteine residues in the Ada protein are used as acceptors in the repair of methyl groups derived from phosphotriesters and base residues.  相似文献   

17.
An insect high density lipoprotein, lipophorin, can be rapidly isolated from larval Manduca sexta (tobacco hornworm) hemolymph by single vertical spin density gradient ultracentrifugation. The two apolipoproteins (Mr = 245,000 and 78,000; designated apoLp-I and apoLp-II, respectively) were readily dissociated and separated in 6 M guanidine HCl by gel permeation chromatography. ApoLp-I and apoLp-II showed no immunological cross-reactivity on electrophoretic blots of sodium dodecyl sulfate-polyacrylamide gels. ApoLp-I and apoLp-II from lipophorin of adult M. sexta behaved identically to their larval counterparts. Amino acid compositions of larval apoLp-I and apoLp-II were similar except with respect to tryptophan and cysteine; apoLp-I contained 32 residues/mol of tryptophan (1.5 mol%) and 22 residues/mol (1.1 mol%) of cysteine; apoLp-II contained 2 residues/mol of tryptophan (0.2 mol%) and 14 residues/mol of cysteine (2.1 mol%). In double immunodiffusion tests, antiserum against apoLp-I or whole lipophorin strongly precipitated lipophorin, while antiserum against apoLp-II caused only minor precipitation. This indicates relatively greater exposure of apoLp-I to the aqueous environment.  相似文献   

18.
To elucidate the roles of tryptophan residues in the structure, stability, and function of Escherichia coli dihydrofolate reductase (DHFR), its five tryptophan residues were replaced by site-directed mutagenesis with leucine, phenylalanine or valine (W22F, W22L, W30L, W47L, W74F, W74L, W133F, and W133V). Far-ultraviolet circular dichroism (CD) spectra of these mutants reveal that exciton coupling between Trp47 and Trp74 strongly affects the peptide CD of wild-type DHFR, and that Trp133 also contributes appreciably. No additivity was observed in the contributions of individual tryptophan residues to the fluorescence spectrum of wild-type DHFR, Trp74 having a dominant effect. These single-tryptophan mutations induce large changes in the free energy of urea unfolding, which showed values of 1.79-7.14 kcal/mol, compared with the value for wild-type DHFR of 6.08 kcal/mol. Analysis of CD and fluorescence spectra suggests that thermal unfolding involves an intermediate with the native-like secondary structure, the disrupted Trp47-Trp74 exciton coupling, and the solvent-exposed Trp30 and Trp47 side chains. All the mutants except W22L (13%) retain more than 50% of the enzyme activity of wild-type DHFR. These results demonstrate that the five tryptophan residues of DHFR play important roles in its structure and stability but do not crucially affect its enzymatic function.  相似文献   

19.
Vibrio cholerae O139 Bengal has recently been identified as a cause of epidemic cholera in Asia. In contrast to V. cholerae O1, V. cholerae O139 Bengal has a polysaccharide capsule. As determined by high-performance anion-exchange chromatography and 1H nuclear magnetic resonance analysis, the capsular polysaccharide of V. cholerae O139 Bengal strain Al1837 has six residues in the repeating subunit; this includes one residue each of N-acetylglucosamine, N-acetylquinovosamine (QuiNAc), galacturonic acid (GalA), and galactose and two residues of 3,6-dideoxyxylohexose (Xylhex). The proposed structure is [formula: see text]  相似文献   

20.
The cysK gene encoding a cysteine synthase of Geobacillus stearothermophilus V was overexpressed in E. coli and the recombinant protein was purified and characterized. The enzyme is a thermostable homodimer (32 kDa/monomer) belonging to the beta family of pyridoxal phosphate (PLP)-dependent enzymes. UV-visible spectra showed absorption bands at 279 and 410 nm. The band at 279 nm is due to tyrosine residues as the enzyme lacks tryptophan. The 410 nm band represents absorption of the coenzyme bound as a Schiff base to a lysine residue of the protein. Fluorescence characteristics of CysK's Schiff base were influenced by temperature changes suggesting different local structures at the cofactor binding site. The emission of the Schiff base allowed the determination of binding constants for products at both 20 degrees C and 50 degrees C. At 50 degrees C and in the absence of sulphide the enzyme catalyzes the decomposition of O-acetyl-l-serine to pyruvate and ammonia. At 20 degrees C, however, a stable alpha-aminoacrylate intermediate is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号