首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To detect thermotolerant fungus strain for decolorization of alcohol distillery wastewater (WAD), 38 fungus strains were studied. Ability of ligninolytic enzyme production was examined at 35 and 43 degrees C on agar media containing 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) and MnCl2. At 43 degrees C, four of Pycnoporus coccineus strains showed their higher potential for WAD decolorization both on agar media and in liquid media. Immobilized mycelia on polyurethane foam removed total phenol about threefold higher than free mycelia did in shaking condition at 43 degrees C. Moreover, color removed by immobilized mycelia nearly 50% higher than free mycelia did.  相似文献   

2.
Over 2 × 107/ml protoplasts were obtained from mycelia of hyper lignolytic fungus (nomenclatured as strain IZU-154) by treatment with the lytic enzyme NovoZym 234 in the presence of 0.05 M maleic acid buffer (pH 5.6) containing 0.6 M MgSO4. The protoplasts regenerated at more than 10% of frequency on solid 2% agar medium containing 0.6 M sucrose as an osmotic stabilizer overlaid with 0.5% agar containing the stabilizer. In the determination of the lignolytic activities of 50 regenerants from protoplasts, 2 strains which degraded more than 56% of the lignin during incubation for 30 d and showed activity higher than the parent were found. The regeneration from protoplasts of this fungus was suggested to be useful for the breeding of strains having higher lignolytic activity than this fungus.  相似文献   

3.
We screened for fungi that can decolorize molasses melanoidin in the tropical zone and isolated some strains, mainly in the genus Aspergillus. Of these, strain No. G-2–6 was most active and was identical with Aspergillus fumigatus based on detailed morphological studies.

This strain decolorized about 75% of a molasses melanoidin solution when the strain was cultivated on a glycerol-peptone medium at 45°C for 3 days with shaking. In successive decolorization reusing the mycelia, this strain had more than 60% of the melanoidin-decolorizing activity at the eighth replacement in the presence of 4% glycerol.

Continuous decolorization of molasses melanoidin solution in a jar fermentor had an almost constant decolorization yield of about 70% at a dilution rate of 0.014 hr-1. At the same time, about 51 % of the chemical oxygen demand and 56% of the total organic carbon in the initial solution were removed. In contrast, continuous decolorization of non-dialyzed molasses melanoidin solution removed a little more chemical oxygen demand and total organic carbon than those of dialyzed molasses melanoidin solution, but had a lower level of melanoidin-decolorizing activity (about 40%).  相似文献   

4.
A number of ecophysiological differences were shown for saprotrophic and clinical strains of the potentially pathogenic microscopic fungus Aspergillus sydowii. The colony growth rates were determined for four saprotrophic and five clinical fungus strains on Czapek medium within the ranges of temperature (5, 10, 15, 20, 30, 35, 37, 40, 42°C) and humidity (0.8, 0.85, 0.9, 0.95, 099 aw), as well as on media with other sources of organic matter (Sabouraud medium, Hutchinson medium with cellulose, and water agar). The capacity for growth of A. sydowii strains on a broad spectrum of organic substrates was determined with the EKOLOG method for multisubstrate testing. The clinical and saprotrophic strains of A. sydowii differed in the colony growth rates under the same temperature and humidity combinations, as well as in the capacity for growth on different organic substrates. At decreased water activity (0.90–0.85 aw), the temperature interval for growth of the saprotrophic strains was narrower (30 ± 2°C) than for the clinical strains (25–30°C). Comparison of growth on different media revealed the highest growth rates of the clinical strains on Sabouraud protein-containing medium. The method of multisubstrate testing showed that the saprotrophic strains grew on sugars better than the clinical ones.  相似文献   

5.
Reliable, large-scale production of Lagenidium giganteum zoospores was obtained on solid media. The fungus was grown for 7 days in a liquid medium of wheat germ, hemp seed, yeast extract, and glucose, then placed onto hemp-seed agar. Zoosporogenesis was induced on agar by immersing the fungal cultures into water. Zoospore production began 10 hr postimmersion, peaked at 18 hr, and ceased by 36 hr. A single, 10-cm Petri dish of fungus on hemp-seed agar produced 1.7?3.8 × 107 zoospores during the 26 hr of zoosporogenesis. Optimal zoospore production occurred with 4- to 7-day-old cultures; cultures older than 10 days produced few zoospores. The temperature range for zoosporogenesis was 15–35°C. The extent of zoosporogenesis was directly related to the volume of water used to induce zoospore formation and inversely proportional to agar thickness. Bioassay of zoospores against second instar Culex quinquefasciatus larvae yielded an LD50 of 400 zoospores/ml.  相似文献   

6.
Forty-two white-rot fungi in submerged cultures were tested to determine their dye decolorization capacity and the optimal conditions for the decolorization process. Trametes pubescens Cui 7571 was found to be the most effective strain in terms of decolorization performance on the azo dye Congo Red, and it exhibited excellent reusability as well as persistence in sequential decolorization experiments. Optimization of the decoloration process was also conducted to evaluate the effects of a number of chemical compounds, metal salts, inducers, and mediators on the dye decolorization rate. On the seventh day, a highest dye removal of 98.83 % was observed with addition of copper at 2.5 mmol L?1, Tween 80 at 1.0 % (v/v), and ferulic acid at 0.50 μmol L?1, respectively. The adsorption of mycelia to dyes was not a significant contributor to dye removal, and decolorization by the functional fungus T. pubescens depended on biodegradation by enzymes, as evidenced by the results of the moist heat sterilization treatment (121°C for 20 min), induction of extracellular enzymes, and scanning electron microscopy. Four dye degradation metabolites, i.e., naphthalene amine, biphenyl amine, biphenyl ,and naphthalene diazonium, were identified by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. The phytotoxicity tests indicated that degraded metabolites had almost a negligible effect on the plant seeds as compared to that of dye, which is indicative of the less toxic nature of the metabolites. Our results suggest that white-rot fungus T. pubescens could be developed into a novel azo dye bioremediation strategy.  相似文献   

7.
Embellisia astragali is a strong, virulent pathogen that develops within milk vetch (Astragalus adsurgens). In order to determine nutrient requirements, the fungus was cultured on 9 carbon sources, 9 nitrogen sources, and 13 growth media in the dark at 25°C. Growth rates and sporulation capacity were measured after 4 and 12 weeks. All carbon sources supported growth, but only soluble starch, inulin, and dextrose supported sporulation. In general, better growth was obtained on disaccharides and polysaccharides than on monosaccharides. Compared with no growth on NH4 +-N and urea, the fungus grew little on all NO3 -N, amino-N, and other organic-N such as peptone. There was no sporulation or very sparse conidia on almost all nitrogen sources with supplied dextrose or soluble starch as sole carbon source. The better growth and sporulation on most of the semidefined media than on defined media indicates that some components in plant or animal material may be vital to the fungus. Sporulation was positively correlated with growth rate in N source experiment at 12 weeks and in growth media experiment at 4 and 12 weeks. The fungus favors grow within agar with growth rate less than 1.18 mm day−1.  相似文献   

8.
Occurrence of cellulase activity was demonstrated in the filtrates of germinating conidiospores and growing mycelia of P. oryzae. Activity and some properties of cellulase in the filtrate of mycelia grown on rice plant powder as carbon source were compared among various strains.

Cellulase activity (C1 and Cx enzymes; cellulose and carboxymethylcellulose as substrates, respectively) in the filtrate of germinating conidiospores was detected in the pathogenic T–l (Ken 53–33) strain as well as nonpathogenic 0 (THU 3 × 1) strain of P. oryzae. The activity was higher in the former than the latter strains. Cellulase activity (Cx enzyme) in the filtrate of growing mycelia was detected in the four strains used, T–l (Ken 53–33), C–3 (N 87), N–1 (H373), and 0 (THU 3 × 1). Cellulase activity (Cx enzyme) in the filtrate of mycelia was optimal at pH 5.0 and 40°C, and stable up to 40°C. Their properties did not differ significantly except for the pH-activity curve at alkaline side among various strains; but cellulase activity (C1 enzyme) was found to be correlated with their pathogenicity except for the case of C–3 strain.  相似文献   

9.
 The occurrence of killer toxins amongst yeasts in Brazilian Riesling Italico grape must was investigated by using the sensitive strain EMBRAPA-26B as a reference strain at 18°C and 28°C. From a total of 85 previously isolated yeasts, 21 strains showed ability to kill the sensitive strain on unbuffered grape must/agar (MA-MB) and 0.1 M citrate/phosphate-buffered yeast extract/peptone/dextrose/agar (YEPD-MB) media both supplemented with 30 mg/l methylene blue. The killer activity of only four yeasts depended on the incubation temperature rather than the medium used. At 28°C, the strains 11B and 53B were not able to show killer action. On the other hand, strains 49B and 84B did not kill the sensitive yeast at 18°C. The killer strain EMBRAPA-91B and a commercial wine killer yeast K-1 were employed to examine the sensitivity of the isolated yeasts on YEPD-MB and MA-MB at 18°C. The sensitivity and neutral characteristics of yeasts were shown to be dependent on the medium and the killer strain. Interactions, including K- R-, K- R+ and K+ R+ strains, simultaneously, have revealed that some K-R+ strains appear to protect the K- R- strain against the killer toxin. Sensitive dead cells, although to a less extent, also exhibited similar protection. Kinetic studies have shown that the maximum specific growth rates were higher for the 20B YEPD-MB-sensitive strain (μmax=0.517 h-1) than for both the 91B (μmax=0.428 h-1) and K-1 (μmax= 0.466 h-1) killer strains. The protective capacity of neutral or sensitive cells that contaminate a fermentation, as well as the higher maximum specific growth rate of sensitive yeasts, besides other factors, may preclude the dominance of a killer strain. This protective capacity may also reduce the risk of a sensitive inoculum being killed by wild-type killer yeasts in open non-sterile fermentation. Received: 3 November 1995/Received revision: 11 March 1996/Accepted: 15 April 1996  相似文献   

10.
Isaria fumosorosea frequently causes mycosis of agricultural pests in the hot semiarid and dry tropical regions of Mexico. Because temperature tolerance restricts the use of fungal biopesticides, we investigated two isolates from these areas for possible development into mycoinsecticides for use in hot weather agricultural zones. We studied the effects of culture system (solid or submerged cultures) and temperature on the fungal growth, extracellular enzyme production, pathogenicity, and thermotolerance of the produced propagules. Between 20 and 28 °C, the specific growth rates of the isolate PCC were higher on solid media, but in the submerged culture, the isolate P43A grew faster even at temperatures of up to 34 °C. On solid media, P43A produced 1.5-fold more proteases than PCC, but in the submerged culture, both strains had similar activities. Under the same culture conditions, PCC produced a blastospore:conidia ratio of 1:2, and P43A produced a ratio of 1:5. PCC aerial conidia had the shortest Lethal Time 50 (LT50, the time to reach 50 % mortality) against Galleria mellonella larvae, but LT50 was equal for the aerial conidia and the submerged propagules of P43A and PCC. The submerged and aerial propagules of P43A were more thermotolerant than those of PCC. Each isolate performed differently in each culture system, and we concluded that the intended production method should be included as a criterion for screening of entomopathogenic fungus. We found that thermotolerance is a specific characteristic of an isolate from a given species. Because of its specific characteristics, P43A shows more promise for the development of a submerged conidia-based mycoinsecticide for foliar application in aqueous form in hot climate regions.  相似文献   

11.
Pestalotia rhododendri was exposed to vapours from 1 ml propanol solution in water and linear growth, formation of aerial hyphae and production of conidia were determined. A special Petri dish technique was used and maximum stimulation of conidial formation was induced by the vapours from a propanol concentration of 3–4 % (v/v) at 25°C. When propanol was added directly to the medium, a concentration of 1.2 × 10?2M was optimal for growth and sporulation at 30°C. Sporulation stimulated by propanol was observed at temperatures from 20–32°C, with an optimum at 30°C. Certain observations indicated that an exposure to propanol for 24 hours was enough to induce a stimulated spore production. The stimulation was noticed on different media at 25°C, and was more pronounced at 30°C. One exception was observed. Propanol did not promote sporulation when the fungus was grown on maltagar at 30°C. Propanol 3 ° (v/v) in combination with the standard medium containing (NH4)2-tartrate as sole nitrogen source, inhibited the linear growth at 15–20°C, was inactive at 22.5° and 25°C, and stimulated growth at 27.5–31°C. The stimulatory effect was maximal at 30°C. Other media were tested at 25° and 30°C. At both temperatures stimulations of linear growth caused by propanol were observed with a medium containing KNO3 as sole nitrogen source, and inhibitions with maltagar and another medium containing l -asparaginc as sole nitrogen source. The linear growth could be either inhibited or stimulated while the sporulation was stimulated.  相似文献   

12.
Abstract

To optimize operating conditions for the decolorization of the azo dye Acid Red 18 (AR18) by crude manganese peroxidase (MnP), some important factors affecting enzymatic decolorization were systematically investigated. Under the optimal enzyme reaction conditions, a decolorization efficiency of more than 82.3% was achieved after 60 min treatment. Furthermore, the manganese chelators, malate, tartrate, and lactate were found to be more favorable for the decolorization of AR18 than malonate, acetate, succinate, maleate, oxalate, and citrate. However, the presence of NaCl or Na2SO4 had a negative impact on the decolorization of AR18. The Km and Vmax values of MnP for AR18 were 169.66 μmol L? 1 and 20.63 μmol L? 1 min? 1, respectively. The decolorization of AR18 by MnP followed second-order reaction kinetics with respect to the dye concentration. The decolorization rate constant increased with increasing temperature from 20°C to 35°C, which indicated an activation energy (Ea) of 15.87 kcal mol? 1 and frequency factor (k0) of 1.36 × 108 mg? 1 L min? 1 according to the Arrhenius equation. The results obtained provide experimental data for the application of crude MnP for the decolorization of AR18, and help to elucidate the biochemical mechanism of dye decolorization by the enzyme.  相似文献   

13.
Aims: The purpose of this study was to investigate the inactivation kinetics of Staphylococcus aureus in a ham model system by high hydrostatic pressure at ambient (25°C) and selected temperatures (45, 55°C). Selective [Baird Parker (BP) agar] and nonselective [brain heart infusion (BHI) agar] growth media were used for enumeration in order to count viable and sublethally injured cells. Methods and Results: The micro‐organism was exposed to a range of pressures (450, 500, 550, 600 MPa) at ambient temperature (25°C) for up to 45 min. Additionally, the behaviour of the micro‐organism was evaluated at mild temperatures in combination with high pressure treatment, namely: (i) 350, 400 and 450 MPa at 45°C; and (ii) 350 and 400 MPa at 55°C, for up to 12 min. Inactivation kinetics were calculated in terms of Dp and zp values. Survival curves of S. aureus at ambient temperature were mostly linear, whereas when temperature was applied, tailing was observed in most survival curves. The estimated Dp values and therefore the number of surviving cells, were substantially higher on the selective BP agar in the whole range of pressures applied, indicating that S. aureus showed greater recovery in the selective BP agar than the nonselective BHI agar. Samples pressurized at ambient temperature needed higher pressures (over 500 MPa) to achieve a reduction of the population of the pathogen more than 5 log CFU ml?1. The same level of inactivation was achieved at lower pressure levels when mild heating was simultaneously applied. Indeed, more than 6 log CFU ml?1 reductions were obtained at 400 MPa and 55°C within the first 7 min of the process in BHI medium. Conclusion: Elevated temperatures allowed lower pressure levels and shorter processing times of pathogen inactivation than at room temperature. Greater recovery of the pathogen was observed in the selective (BP agar) medium, regardless of pressure and temperature applied. Significance and Impact of the Study: The obtained kinetics could be employed by the industry in selecting optimum pressure/temperature processing conditions. Attention must be given to the selection of the enumeration medium, as the use of an inappropriate medium would lead to underestimation of the surviving cells, thus imposing a risk in the microbiological safety of the product.  相似文献   

14.
Aims: Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Methods and Results: Small millet–gel granules were made of the mixtures of 80–95% millet powder with 5–20% polymer gel (polyacrylamide, polyacrylate or acrylate‐acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g?1 dry granules plus 87·5% water, followed by static incubation at 20°C for 4–12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8‐day culture of this preparation discharged maximally 58·5 × 104 conidia mg?1 granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86–97% RH. During storage at 6°C, granular cultures with >85% water content had twofold longevity (120 days) and half‐decline period (34–36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6°C. However, conidia from 70‐day‐stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC50s. Conclusions: The millet–gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. Significance and Impact of the Study: The granular cultures are more useful for aphid control.  相似文献   

15.
The potential of isolates of Pochonia chlamydosporia var. chlamydosporia as biocontrol agents for root-knot nematodes was investigated in vitro and on pistachio plants. On potato dextrose agar, growth of all isolates started at temperatures above 10°C, reached maximum between 25 and 28°C and slowed down at 33°C. On water agar, all isolates parasitized more than 85% of the eggs of Meloidogyne javanica at 18°C after 3 weeks. Filtrates of isolates grown on malt extract broth did not cause more than 5% mortality on second-stage juveniles of M. javanica after 48 h of incubation. A single application of 10×103 chlamydospores (produced on sand–barley medium) g–1 soil, was applied to unsterilised soil planted with pistachio cv. Kalehghochi, and plants were inoculated with 3000 nematode eggs. After 120 days in the glasshouse, nematode multiplication and damage were measured. Ability of fungus isolates to survive in the soil and to grow on roots were estimated by counting colony forming units (cfu) on semi-selective medium. Fungal abundance in soil increased nearly 3-fold and 10×103 and 20×103 cfu g–1 root of pistachio were estimated in pots treated with isolates 40 and 50, respectively. Strain 50 was more abundant in soil and on the roots, infected more eggs (40%) on the roots and controlled 56% of total population of M. javanica on pistachio roots, whereas isolate 40 parasitized 15% of the eggs on the roots and controlled ca. 36% of the final nematode population.  相似文献   

16.
Abstract Five brands of French bottled mineral water were analyzed by heterotrophic plate counts (HPC) and for the presence of multiple antibiotic resistant bacteria. HPC at 22°C were around 104 colony forming units ml-1 on R2A medium. Enumeration on PCA/10, MH, and especially PCA and King B media was less efficient. At 37°C, HPC were two to three orders of magnitude less than at 22°C. Moreover, phenotypic diversity (7 to 15 phenotypes) was optimal on R2A incubated at 22°C. All isolates were identified as non-fermentative Gram-negative rods and 75% were non-identifiable with the API 20NE system. Stenotrophomonas maltophilia and fluorescent Pseudomonas were isolated on VIA and CFC selective agar media, respectively. Burkholderia cepacia strains were not isolated on BCSA medium. The species S. maltophilia was found in 33%, 28%, and 11% of sample from springs A, D, and E, respectively. Independent of brand, isolates from HPC media were less efficient to achieve confluent growth in 18 h on MH at 30 or 37°C (0 to 40%) than isolates from selective media (28 to 63%). Seventy percent of the total isolates from dominant microflora (1–5 2 103 CFU ml-1 on HPC media) were resistant against two or four antibiotics. The antibiotics concerned were principally aztreonam, ampicillin, and nalidixic acid. The remaining dominant bacteria showed a 6–9 multiple antibiotic resistant (MAR) pattern. All isolates were susceptible to newer antimicrobial agents. Owing to their low nutrient and temperature requirements, these isolates are unlikely to cause concern to public heath. Fifty percent of strains isolated from selective media (non-dominant microflora, 4–40 CFU l-1) showed a 10–18 MAR pattern and 33%, identified as S. maltophilia, a 20–27 MAR pattern. However, minocycline was effective against all isolates. Owing to its low concentration, colonization of human intestine by MAR S. maltophilia is unlikely.  相似文献   

17.
Due to the structure and the composition of Paecilomyces variotii, the mycelia of this fungus could have potential applications as ingredients in wettable foods. For this use, drying could be employed, justifying the study of thermal behavior of P. variotii. The objectives of this work were to perform a study of thermal behavior of P. variotii isolates, to evaluate the hydration properties of these mycelia and to analyze the effect of different technological parameters on the latter properties. Wet cultures exhibited a wide endothermic transition, with mean values of peak temperature of 61°C and denaturation enthalpy of 4 J/g dry matter. Initial (50°C) and final (80°C) temperatures of the endothermic transition were used to dry the mycelia. Freeze-drying was also assayed. For all dried mycelia, a decrease in denaturation enthalpy between 40 and 50% was observed for drying at 50°C and freeze-drying, and a drastic decrease of almost 100% for drying at 80°C. According to the hydration properties, wet mycelia exhibited water holding capacity (WHC) value of 45 g water/g dry matter. Significant differences among dried mycelia, resulting WHC values in order: 50°C > freeze-dried > 80°C (p < 0.05) were revealed for each P. variotii strain. Fungi obtained by drying at 50 C and by freeze-drying, showed a rapid water absorption (t 1/2 < 0.1 min). Ionic strength, pH and particle size of dried mycelia influenced the hydration properties.  相似文献   

18.
The influence of temperature on the growth rate, sporulation density and zoospore release of Phytophthora infestans, cultivated on rye agar, has been studied. Temperature significantly influenced all the features of the fungus mentioned above. The highest yield of sporangia per 1 cm2 of aerial mycelium occurred at 24°C while the highest percentage of sporangia releasing zoospores was observed when the fungus was grown at 15 °C. When considering the size of the fungal colony the highest production of sporangia was obtained at 20°C. It was concluded that the temperature at which the fungus was cultured predetermined the way it germinated.  相似文献   

19.
The fungus, Alternaria alternata (Fr.) Keissler Strain 501, has been evaluated as a bioherbicide for control of Eupatorium adenophorum Spreng., but the biology of the pathogen–host interaction and the optimal environmental conditions for disease development and effective weed control are unknown. Disease development of A. alternata Strain 501 mycelia on E. adenophorum was assessed under several factors including pathogen inoculum concentration, plant age, dew period duration, post-dew temperature, storage temperature and duration. The minimum inoculum concentration required to kill E. adenophorum seedlings was 3.2×106 mycelial fragment mL?1. E. adenophorum seedlings at the four-leaf-pair stage were more susceptible than the older plants, especially those at the older than seven-leaf-pair stage. With a dew period of at least 14 h, 100% mortality occurred. The optimal post-dew temperature for disease development was 18–25°C. Storage at <4°C maintained the infectivity of A. alternata strain 501 mycelia on E. adenophorum longer. Using light and scanning electron microscopy to examine the infection process of A. alternata Strain 501 mycelia, it was shown that the time from initiation to completion of infection with mycelia was much shorter (14 h) than with conidia (72 h). It was further shown that mycelial infection occurred predominately through direct penetration at intercellular junctions, while conidial infection occurred predominately through stomatal penetration. This suggests that mycelia are more suitable as infection propagules for A. alternata strain 501 in a bioherbicide for the control of E. adenophorum.  相似文献   

20.
The effects of temperature and mycological media on mycelial growth and estimates of spore production of an indigenous entomopathogenic fungus, Isaria sp., found during natural epizootics on whiteflies in the Lower Rio Grande Valley of Texas, were investigated. The radial growth (mm/day) of Isaria sp. as a function of temperature fits a linear model; with faster growth on Sabouraud dextrose agar with yeast extract, SDAY slopes (0.23) than on Sabouraud maltose agar, SMA slopes (0.14) from 20 to 30°C, with an optimal temperature of 30°C (SDAY: 4.1 mm, SMA: 3.1 mm). Moderate growth occurred at 25°C (SDAY: 3.4 mm, SMA: 2.7 mm). Growth was lowest at 20°C (SDAY: 1.9 mm, SMA: 1.8 mm). No fungal growth was observed at 35°C and 40°C. However, when Isaria sp. was exposed to 35°C for the first 7 days, it could recover and grow when transferred to 25°C (SDAY: 3.5 mm, SMA: 2.8 mm). No recovery or growth occurred after transfer from 40°C to 25°C. The average conidial production on SDAY after 20 days incubation at 25°C and a photoperiod of 14:10 h light: dark was 1.2 × 108 conidia/cm2 with 100% spore viability. When compared on SDAY at 25°C, the radial growth rate of I. javanica ex type CBS 134.22 (5.1 mm/day) was greater than seven Isaria isolates including Isaria sp.; but maximum growth rates were similar among all related Isaria isolates (90–97%). The Isaria sp. fungus tolerates high temperatures (35°C), suggesting that it is naturally selected for the subtropical semi-arid environment, where it could serve as an important natural control agent of the sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B, one of the most invasive and economically damaging insects to agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号