首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apigenin (5,7,4′-trihydroxyflavone) is a cancer chemopreventive agent and a member of the family of plant flavonoids. Apigenin interaction with liposomes formed with dipalmitoylphosphatidylcholine (DPPC) was investigated by means of FTIR spectroscopy, 1H NMR and EPR techniques. Fluorescent microscopy and electron microscopy were applied to study the apigenin effects on colon myofibroblasts and human skin fibroblasts. The strong rigidifying effect of apigenin with respect to polar head groups was concluded on the basis of the action of the flavone on partition coefficient of Tempo spin label between the water and lipid phases. The ordering effect was also found in hydrophobic region at the depth monitored by 5-SASL and 16-SASL spin labels. The inclusion of apigenin to the membrane restricted the motional freedom of polar head groups lowering penetration of Pr3 + ions to the membranes. The 1H NMR technique supported also the restriction of motional freedom of the membrane in the hydrophobic region, especially in the zone of CH2 groups of alkyl chains. FTIR analysis showed that apigenin incorporates into DPPC liposomes via hydrogen bonding between its own hydroxyl groups and lipid polar head groups in the COPOC segment. It is also very likely that hydroxyl groups of apigenin link with polar groups of DPPC by water bridges. Electron and fluorescence microscopic observations revealed changes in the internal membrane organization of the examined cells. In conclusion, the changes of the structural and dynamic properties of membranes can be crucial for processes involving tumor suppression signal transduction pathways and cell cycle regulation.  相似文献   

2.
The inclusion complexation behavior of azadirachtin with several cyclodextrins and their methylated derivatives has been investigated in both solution and the solid state by means of XRD, TG-DTA, DSC, NMR, and UV-vis spectroscopy. The results show that the water solubility of azadirachtin was obviously increased after resulting inclusion complex with cyclodextrins. Typically, beta-cyclodextrin (beta-CD), dimethyl-beta-cyclodextrin (DMbetaCD), permethyl-beta-cyclodextrin (TMbetaCD), and hydroxypropyl-beta-cyclodextrin (HPbetaCD) are found to be able to solubilize azadirachtin to high levels up to 2.7, 1.3, 3.5, and 1.6 mg/mL (calculated as azadirachtin), respectively. This satisfactory water solubility and high thermal stability of the cyclodextrin-azadirachtin complexes, will be potentially useful for their application as herbal medicine or healthcare products.  相似文献   

3.
The complexation of Zn2+ by quercetin, (+)-catechin and several derivatives has been investigated in the aim to determine the stoichiometry and the stereospecificity and its influence on their antioxidant properties. These studies have been conducted under anaerobic conditions in hydro-organic solvents buffered at pH 7 using UV-Vis and 1H NMR spectroscopies. From the evolution of the spectra of the flavonoids with the concentration of ZnAc their stoichiometry and the coordination sites were determined.  相似文献   

4.
R Timkovich 《Biochemistry》1986,25(5):1089-1093
Mixtures of the dissimilatory nitrite reductase cytochrome cd1 from Pseudomonas aeruginosa and potential electron-donating proteins were prepared in both fully oxidized and fully reduced states and examined by 1H NMR spectroscopy. The relatively narrower lines of the donor proteins enabled them to be clearly observed in spectra in the presence of significant amounts of the high molecular weight cd1. Mixtures of the physiological donor (Pseudomonas ferrocytochrome c-551) and ferrocytochrome cd1 showed specific line-broadening effects on the resonances of c-551 that depended on the mole ratio of c-551 to cd1. The experimental broadening fit a model in which c-551 is in intermediate or fast exchange between free solution and a complex with cd1, with an association constant for the complex in excess of 10(4) M-1. The model yields a minimum estimate for the forward bimolecular rate constant of 5 X 10(7) M-1 s-1 and suggests that the actual value may be much larger. The complexation was independent of pH in the range of 6-8, was independent of ionic strength over a salt concentration range of 20-1000 mM, and possessed a low thermal activation barrier. Mixtures of ferricytochrome c-551 and ferricytochrome cd1 showed no observable NMR perturbations, indicating that any hypothetical complex involving the oxidized forms must follow different dynamical and/or equilibrium conditions. No observable NMR perturbations existed in spectra of mixtures of cd1 and mammalian cytochrome c or Pseudomonas azurin in either oxidation state.  相似文献   

5.
Chiral recognition by cyclodextrins is of considerable importance, especially for pharmaceutical industry, in view of the possible side effects of the second enantiometer of chiral drugs. In general, it manifests itself in all NMR parameters (chemical shifts, coupling constants, NOE and ROE effects, and relaxation rates) on one hand. On the other hand, it allows one to determine the thermodynamic parameters characterizing diastereomeric complexes formed by cyclodextrins with enantiomeric guests. After an introduction and a general discussion of NMR manifestations of chiral recognition by cyclodextrin, the existing literature data on this problem will be discussed herein. Chirality 16:90-105, 2004.  相似文献   

6.
Proton NMR was used as a probe to study the interaction of the Tl(+) ion with 9-18-membered macromonocyclic tri-, tetra-, and hexaamines in dimethylformamide (DMF) solution. A study of proton chemical shift of ligands as a function of Tl(+) ion to ligand mole ratio revealed that the complexation reactions occur in a stepwise manner. Formation of a 1:1 complex is followed by the addition of a second complexant molecule to form a homo-sandwich complex for triazamacrocycle ligands and a mixed ligand complex in the case of hexamethylhexacyclen (HMHCY) and 1,4,7-triazacyclononane ([9]aneN(3)). The formation constants of resulting 1:1 and 1:2 (homo and mixed ligand sandwich) complexes in DMF solution were evaluated from computer fitting of the chemical shift-mole ratio data. The mixed ligand complexes may be more stable than the parent complex in which both ligands are the same. The influence of cavity size and substitution of methyl groups on nitrogen atoms of the macrocyclic ring the stability of the resulting complexes is discussed. The geometries of the tri- and tetraazamacrocycle ligands and their Tl(+) ion complexes were optimized by an ab initio method, and the calculated binding energies of resulting complexes were compared. Both the experimental and theoretical studies revealed that, in the presence of methyl groups, the stability of triazamacrocycle complexes with Tl(+) ion was decreased.  相似文献   

7.
The EPR and 1H NMR spectroscopy of seven [Ru(NH3)5L]2+ complexes, where L = 3,5-dimethoxyphenylcyanamide (MeO2pcyd), 3,4,5-trimethoxyphenylcyanamide (MeO3pcyd), 4-nitrophenylcyanamide (NO2pcyd), 2,3-dichlorophenylcyanamide (Cl2pcyd), 2,4,6-trichlorophenylcyanamide (Cl3pcyd), 2,3,5,6-tetrachlorophenylcyanamide (Cl4pcyd) and pentachlorophenylcyanamide (Cl5pcyd), was performed. EPR spectra of the complexes showed an axial signal with g|| and g at high and low field, respectively. The g|| axis is suggested to lie along the Ru-cyanamide bond. Gas-phase DFT calculations of [Ru(NH3)5 phenylcyanamide]2+ showed spin density localized mostly on the phenylcyanamide ligand, in disagreement with EPR data. DFT/polarizable continuum model (PCM, water solvation) calculations shifted spin density towards ruthenium so that spin density was shared between ruthenium and phenylcyanamide ligand. Proton contact shifts were determined from NMR and EPR data and were used to estimate spin density distributions on phenyl ring carbons. The results showed that the DFT/PCM calculation overestimated spin density on phenyl ring carbons by approximately one order of magnitude. Donor-acceptor interactions between the solute and solvent that are not fully accounted for in the DFT/PCM method are suggested to stabilize the Ru(III) oxidation state.  相似文献   

8.
Investigations of the structure and properties of paramagnetic carotenoid radical cations and diamagnetic carotenoid dications using electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy in conjunction with electrochemical, optical, and HPLC measurements, and molecular orbital calculations are described. These methods were applied to determine how the carotenoid radical cations and dications can be formed, their electron-transfer properties and stability in various media, and the mechanism by which carotenoid radical cations can isomerize.  相似文献   

9.
The interactions of the water-soluble porphyrins M(TMpy-P4) [M = H2, Cu(II), Ni(II), and Co(III); TMpy-P4 = tetrakis(4-N-methylpyridyl)porphyrinato ion], with the hexadeoxyribonucleotides d(CGTACG)2, d(TACGTA)2, d(GCATGC)2, d(TGTGCA)2, and d(CTATAG)2 have been investigated by resonance Raman and/or UV-visible spectroscopy. The results indicate that all hexamers containing the 5'CG3' as well as the 5'GC3' site, and also the mismatched hexamer d(TGTGCA)2, are capable of intercalating the H2, Cu(II) and Ni(II) porphyrins. 1H nuclear magnetic resonance spectra of d(CGTACG)2 mixed with Cu(TMpy-P4) have provided further evidence for the intercalation. For the other cases, outside binding by localized electrostatic interaction is suggested. There is no evidence of groove binding to any of the hexamers. Possible reasons for different binding properties of long and short helices are discussed.  相似文献   

10.
Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.  相似文献   

11.
In this work, we have studied the formation of complexes between flavonols, (quercetin, rutin, quercitrin, kaempferol, luteolin, tamarixetin) and flavanols ((+)-catechin, (−)-epicatechin), flavanonol, (+)-taxifolin, and Zn acetate in two hydro-organic media at neutral pH in the absence of oxygen. The complexation was first studied by cyclic voltammetry. Then preparative electrolysis have been attempted followed by coulometry, UV-Vis optical absorption and circular dicroism spectroscopies for characterizing the oxidized compounds. Spectroelectrochemistries monitored either in the UV-Vis or in the EPR spectrometers at room temperature have been also used and we have identified o-semi-quinone intermediates in some cases. Different behaviour vis-à-vis the complexation by Zn2+ according to the molecular structures of these different families of polyphenols have been found. Some of them are more easily oxidizible.  相似文献   

12.
 Proton magnetic resonance was used to characterize the dynamics of water in gelatin. Both sol and gel states were investigated. Transverse relaxation rates (R 2) were dependent on the proton frequency measurement. (R 2) measured with the Carr-Purcell-Meiboom-Gill pulse sequence was dependent on pulse spacing. These observations were interpreted in terms of chemical exchanges between water protons and those of the macromolecules in the sol state, whereas in the gel state the contribution of diffusion through microheterogeneities in the sample seems to provide an additional transverse relaxation mechanism. Received: 10 May 1999 / Revised version: 13 December 1999 / Accepted: 25 January 2000  相似文献   

13.
Two-dimensional 1H NMR studies of cytochrome c   总被引:1,自引:0,他引:1  
A J Wand  S W Englander 《Biochemistry》1985,24(20):5290-5294
Two-dimensional nuclear magnetic resonance techniques were used to assign the NH, C alpha H, and C beta H protons of over 60 of the 104 amino acid residues in the 1H NMR spectrum of horse ferrocytochrome c. The majority of these amino acids were completely assigned. Assignments were based on the analysis of two-dimensional J-correlated (COSY), nuclear Overhauser effect (NOESY), and relayed COSY spectra and on comparisons of the J-correlated spectra of various cytochrome c species. Spin diffusion is not a problem with monomeric proteins the size of cytochrome c. Here these advances are illustrated with data that lead to the assignment of the heme-associated residues cysteine-14 and tryptophan-59, the axial ligands methionine-80 and histidine-18, the entire N-terminal helix, and several other amino acid spin systems. With these approaches, structure, structure change, the internal dynamics of cytochrome c, and the interaction of these with function are being studied, especially by observation of the hydrogen exchange behavior of essentially all the H-bonded amides and some side chain protons in both the reduced and oxidized proteins.  相似文献   

14.
1H NMR relaxation studies of protein-polysaccharide mixtures   总被引:1,自引:0,他引:1  
NMR water proton relaxation was used to characterize the structure of plant proteins and plant protein-polysaccharide mixtures in aqueous solutions. The method is based on the mobility determination of the water molecules in the biopolymer environment in solutions through relaxation time measurements. Differences of conformation between pea globulin and alpha gliadin seem to control the water molecules mobility in their environment. As deduced from the study of complexes, the electrostatic interactions may also play a major role in the water molecule motions. The phase separation induced under specific conditions seems to promote the translational diffusion of structured water molecules whereas the rotational motion was more restricted.  相似文献   

15.
As deduced from its 1H NMR spectrum, oncomodulin's solution conformation is very similar to the tertiary structure of other single domain 2-site calcium-binding proteins of the troponin C class. Despite its extensive amino acid sequence homology with parvalbumins, however, oncomodulin differs significantly from these proteins in its Ca(II)----Ln(III) exchange characteristics. Although the relative affinity of Lu(III) for the EF site of Ca2-oncomodulin was normal, beta Lu:EF/beta Ca:EF being 175 +/- 15, displacement of Ca(II) from the CD site was not favored, beta Lu:CD/beta Ca:CD being 1.2 +/- 0.1. Lineshape analyses of several 1H NMR resonances generated by the Lu(III) titration of Ca2-oncomodulin indicated that Ca(II)----Ln(III) exchange at the CD site was 15-20 s-1, approximately 100 times faster than exchange at the CD site of parvalbumins. Analyses of the distribution of metal-bound oncomodulin species showed that Ca(II)----Lu(III) exchange was cooperative, the coefficient of cooperativity being estimated as 5 +/- 1. The kinetics of the release of Yb(III) from oncomodulin as measured by optical stopped-flow techniques corroborated the observed cooperativity in metal binding; the off-rate constant of Yb(III) from the EF site of Yb2-oncomodulin was 0.0036 s-1, approximately 19 times slower than the release of Yb(III) from the EF site of Ca1Yb1-oncomodulin. We attribute part of the reduced preference of small Ln(III)s for the CD site of oncomodulin to a combination of this site's inherent incompressibility (Williams, T.C., Corson, D.C. & Sykes, B.D. (1984) J. Am. Chem. Soc. 106, 5698-5702) and the Glu----Asp substitution at sequence position 59, the residue which chelates metal at the -X coordination position. Like the CD site in oncomodulin, site III in troponin C has not only a lower affinity for calcium relative to the CD site of parvalbumins but also aspartic acid at its -X position; a water molecule bridges the gap between bound metal and the carboxyl group of the relatively short side chain of Asp-114 (Herzberg, O. & James, M. N. G. (1985) Biochemistry 24, 5298-5302). Hence, we suggest that Asp-59 in oncomodulin binds metal only indirectly through an intervening water molecule, a proposal which is consistent with the CD site's reduced affinity for ions the size of Ca(II) or smaller.  相似文献   

16.
17.
Ribonuclease A was studied by two-dimensional 1H NMR spectroscopy. 10 out of 12 alanine and 9 out of 10 threonine spin systems as well as all valine [9], leucine [2] and isoleucine [3] spin systems were identified from the correlated spectroscopy (COSY) and relayed coherence transfer spectroscopy (RCT). Sequence-specific assignments were obtained from nuclear Overhauser effect spectra for proton resonances of 21 amino acid moieties. 2' and 3'-pyrimidine-nucleotide-RNase-A complexes were also investigated by two-dimensional NMR. We were able to monitor structural changes in the active center, the vicinity of the active center and in regions far from the catalytic region. Chemical shift changes of resonances of protons near Thr-45 reflected the binding of the same moiety. This in turn is also dependent on the position of the nucleotide phosphate group. Binding of 2' nucleotides led to characteristic changes in protein regions not affected by the binding of 3' nucleotides. These results are interpreted in terms of structural differences between the 2' and 3'-nucleotide-RNase-A complexes; the structure of the complex of the native 3' nucleotide inhibitor being more closely related to that of the free protein.  相似文献   

18.
J P Rehmann  J K Barton 《Biochemistry》1990,29(7):1701-1709
The binding of Ru(phen)3(2+), Rh(phen)3(3+), and Co(phen)3(3+) to the oligonucleotides d(GTGCAC)2 and 5'-pd(CGCGCG)2 has been examined by 1H NMR spectroscopy as a function of temperature, concentration, and chirality of the metal complex. The duplex oligonucleotides act as chiral shift reagents for the metal complexes; phenanthroline protons associated with each enantiomer are resolved upon binding to the oligomer. The spectral titrations, consistent with photophysical studies, indicate that the complexes bind to the oligomer through two modes: one assigned as intercalation favoring the delta-isomer, and the other assigned as the surface-bound interaction favoring the lambda-isomer. The ligand protons are perturbed in a manner that implies sensitivity of particular protons to binding mode; specifically, the H4,7 protons appear to be altered most for the lambda-enantiomer while the H5,6 protons are perturbed more for the delta-enantiomer. The NMR chemical shift variations appear particularly sensitive to this surface-bound interaction, which, on the basis of a comparison of binding and photophysical parameters for Ru(phen)3(2+), appears more prominant in binding to oligonucleotides than that to polynucleotides. With respect to oligonucleotide proton shifts, the adenine H2 proton, positioned in the minor groove of the helix, shows the largest upfield shifts with metal binding, and more dramatically with lambda-isomers. The major groove thymine methyl protons (TMe) shift downfield to a lesser extent, and more so for delta-isomers. The different binding modes also differ with respect to their dynamics of association; the longitudinal relaxation rates of delta- and lambda-4,7 phenanthroline protons of Rh(phen)3(3+) are 0.88 and 1.14 s, respectively, in the presence of d(GTGCAC)2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
C Redfield  C M Dobson 《Biochemistry》1990,29(31):7201-7214
Complete main-chain (NH and alpha CH) 1H NMR assignments are reported for the 130 residues of human lysozyme, along with extensive assignments for side-chain protons. Analysis of 2-D NOESY experiments shows that the regions of secondary structure for human lysozyme in solution are essentially identical with those found previously in a similar study of hen lysozyme and are in close accord with the structure of the protein reported previously from X-ray diffraction studies in the crystalline state. Comparison of the chemical shifts, spin-spin coupling constants, and hydrogen exchange behavior are also consistent with closely similar structures for the two proteins in solution. In a number of cases specific differences in the NMR parameters between hen and human lysozymes can be correlated with specific differences observed in the crystal structures.  相似文献   

20.
The binding of lanthanide(III) ions to human serum apotransferrin has been investigated through 1H NMR spectroscopy. Several well resolved isotropically shifted signals have been observed between 100/-100 ppm for the Tm, Tb, Yb and Dy derivatives. Significant spectroscopic inequivalence of the two metal binding sites has been revealed. Differences in the behavior of signals assigned to the C- and to the N-terminal site have been observed upon titration with sodium perchlorate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号