首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expressed sequence tags (ESTs) from the Arabidopsis thaliana sequencing project were used to construct a genetic RFLP map for Brassica oleracea. Of the 110 A. thaliana ESTs tested, 95 were found to be informative RFLP probes in map construction. In total, 212 new loci corresponding to the 95 ESTs were added to the existing genetic map of B. oleracea. The enriched map covers all nine basic linkage groups and confirms that the chromosomes of B. oleracea and A. thaliana are similar in linear organization. However, varying levels of sequence conservation between the chromosomes of B. oleracea and A. thaliana were detected in different regions of the genomes. Long conserved regions encompassing entire chromosome arms in both genomes were identified; these are probably shared by descent. On the other hand, extensive rearrangements were observed in numerous chromosome regions, producing a mosaic of A. thaliana-like segments in the genome of Brassica. The presence of extensive chromosome duplication in A. thaliana was taken into consideration in the construction of the comparative maps of B. oleracea and A. thaliana.  相似文献   

2.
The cultivated Brassica species are the group of crops most closely related to Arabidopsis thaliana (Arabidopsis). They represent models for the application in crops of genomic information gained in Arabidopsis and provide an opportunity for the investigation of polyploid genome formation and evolution. The scientific literature contains contradictory evidence for the dynamics of the evolution of polyploid genomes. We aimed at overcoming the inherent complexity of Brassica genomes and clarify the effects of polyploidy on the evolution of genome microstructure in specific segments of the genome. To do this, we have constructed bacterial artificial chromosome (BAC) libraries from genomic DNA of B. rapa subspecies trilocularis (JBr) and B. napus var Tapidor (JBnB) to supplement an existing BAC library from B. oleracea. These allowed us to analyse both recent polyploidization (under 10,000 years in B. napus) and more ancient polyploidization events (ca. 20 Myr for B. rapa and B. oleracea relative to Arabidopsis), with an analysis of the events occurring on an intermediate time scale (over the ca. 4 Myr since the divergence of the B. rapa and B. oleracea lineages). Using the Arabidopsis genome sequence and clones from the JBr library, we have analysed aspects of gene conservation and microsynteny between six regions of the genome of B. rapa with the homoeologous regions of the genomes of B. oleracea and Arabidopsis. Extensive divergence of gene content was observed between the B. rapa paralogous segments and their homoeologous segments within the genome of Arabidopsis. A pattern of interspersed gene loss was identified that is similar, but not identical, to that observed in B. oleracea. The conserved genes show highly conserved collinearity with their orthologues across genomes, but a small number of species-specific rearrangements were identified. Thus the evolution of genome microstructure is an ongoing process. Brassica napus is a recently formed polyploid resulting from the hybridization of B. rapa (containing the Brassica A genome) and B. oleracea (containing the Brassica C genome). Using clones from the JBnB library, we have analysed the microstructure of the corresponding segments of the B. napus genome. The results show that there has been little or no change to the microstructure of the analysed segments of the Brassica A and C genomes as a consequence of the hybridization event forming natural B. napus. The observations indicate that, upon polyploid formation, these segments of the genome did not undergo a burst of evolution discernible at the scale of microstructure.  相似文献   

3.
To improve resolution of physical mapping on Brassica chromosomes, we have chosen the pachytene stage of meiosis where incompletely condensed bivalents are much longer than their counterparts at mitotic metaphase. Mapping with 5S and 45S rDNA sequences demonstrated the advantage of pachytene chromosomes in efficient physical mapping and confirmed the presence of a novel 5S rDNA locus in Brassica oleracea, initially identified by genetic mapping using restriction fragment length polymorphism (RFLP). Fluorescence in situ hybridization (FISH) analysis visualized the presence of the third 5S rDNA locus on the long arm of chromosome C2 and confirmed the earlier reports of two 45S rDNA loci in the B. oleracea genome. FISH mapping of low-copy sequences from the Arabidopsis thaliana bacterial artificial chromosome (BAC) clones on the B. oleracea chromosomes confirmed the expectation of efficient and precise physical mapping of meiotic bivalents based on data available from A. thaliana and indicated conserved organization of these two BAC sequences on two B. oleracea chromosomes. Based on the heterologous in situ hybridization with BACs and their mapping applied to long pachytene bivalents, a new approach in comparative analysis of Brassica and A. thaliana genomes is discussed.  相似文献   

4.
5.
拟南芥与油菜同属十字花科植物芸寡族,亲缘关系很近,基因组间的同源性很高,在用拟南芥EST克隆和油菜DNA克隆作探针定位了甘蓝型油菜一系列重要性状的基础上,对25个与油菜雄性不育恢复基因,硼高效利用基因,抗菌核病QTL及油菜种间杂种营养优势相关联的克隆进行了测序,在拟南芥基因组数据库中寻找到与这25个克隆高度同源的序列,根据这些高度同源序列在拟南芥染色体上的相位位置,将油菜DNA克隆整合到了拟南芥遗传图谱上,其中油菜硼高效基因BE1两侧的标记克隆整合在拟南芥第一染色体长臂一个较小的区段内,以该目标区段内的拟南芥EST克隆PA24为探针对甘蓝型油菜基因组比较作图,将该克隆定位在油菜连锁图BE1两侧标记之间,表明了利用基因组间的相互比较作图来精细定位芸薹属作物重要基因的可能性。  相似文献   

6.
Due to their relatedness to Arabidopsis thaliana (Arabidopsis), the cultivated Brassica species represent the first group of crops with which to evaluate comparative genomics approaches to understanding biological processes and manipulating traits. We have constructed a high-quality binary BAC library (JBo) from genomic DNA of Brassica oleracea var. alboglabra, in order to underpin such investigations. Using the Arabidopsis genome sequence and clones from the JBo library, we have analysed aspects of gene conservation and microsynteny between a 222 kb region of the genome of Arabidopsis and homoeologous segments of the genome of B. oleracea. All 19 predicted genes tested were found to hybridize to clones in the JBo library, indicating a high level of gene conservation. Further analyses and physical mapping with the BAC clones identified allowed us to construct clone contig maps and analyse in detail the gene content and organization in the set of paralogous segments identified in the genome of B. oleracea. Extensive divergence of gene content was observed, both between the B. oleracea paralogous segments and between them and their homoeologous segment within the genome of Arabidopsis. However, the genes present show highly conserved collinearity with their orthologues in the genome of Arabidopsis. We have identified one example of a Brassica gene in a non-collinear position and one rearrangement. Some of the genes not present in the discernible homoeologous regions appear to be located elsewhere in the B. oleracea genome. The implications of our findings for comparative map-based cloning of genes from crop species are discussed.  相似文献   

7.
Lukens L  Zou F  Lydiate D  Parkin I  Osborn T 《Genetics》2003,164(1):359-372
Brassica oleracea is closely related to the model plant, Arabidopsis thaliana. Despite this relationship, it has been difficult to both identify the most closely related segments between the genomes and determine the degree of genome replication within B. oleracea relative to A. thaliana. These difficulties have arisen in part because both species have replicated genomes, and the criteria used to identify orthologous regions between the genomes are often ambiguous. In this report, we compare the positions of sequenced Brassica loci with a known position on a B. oleracea genetic map to the positions of their putative orthologs within the A. thaliana genome. We use explicit criteria to distinguish orthologous from paralogous loci. In addition, we develop a conservative algorithm to identify collinear loci between the genomes and a permutation test to evaluate the significance of these regions. The algorithm identified 34 significant A. thaliana regions that are collinear with >28% of the B. oleracea genetic map. These regions have a mean of 3.3 markers spanning 2.1 Mbp of the A. thaliana genome and 2.5 cM of the B. oleracea genetic map. Our findings are consistent with the hypothesis that the B. oleracea genome has been highly rearranged since divergence from A. thaliana, likely as a result of polyploidization.  相似文献   

8.
The annotated Arabidopsis genome sequence was exploited as a tool for carrying out comparative analyses of the Arabidopsis and Capsella rubella genomes. Comparison of a set of random, short C. rubella sequences with the corresponding sequences in Arabidopsis revealed that aligned protein-coding exon sequences differ from aligned intron or intergenic sequences in respect to the degree of sequence identity and the frequency of small insertions/deletions. Molecular-mapped markers and expressed sequence tags derived from Arabidopsis were used for genetic mapping in a population derived from an interspecific cross between Capsella grandiflora and C. rubella. The resulting eight Capsella linkage groups were compared to the sequence maps of the five Arabidopsis chromosomes. Fourteen colinear segments spanning approximately 85% of the Arabidopsis chromosome sequence maps and 92% of the Capsella genetic linkage map were detected. Several fusions and fissions of chromosomal segments as well as large inversions account for the observed arrangement of the 14 colinear blocks in the analyzed genomes. In addition, evidence for small-scale deviations from genome colinearity was found. Colinearity between the Arabidopsis and Capsella genomes is more pronounced than has been previously reported for comparisons between Arabidopsis and different Brassica species.  相似文献   

9.
10.
Quantitative trait locus (QTL) analysis was used to study the evolution of genes controlling the timing of flowering in four Brassica genomes that are all extensively replicated. Comparative mapping showed that a chromosomal region from the top of Arabidopsis thaliana chromosome 5 corresponded to three homoeologous copies in each of the diploid species Brassica nigra, B. oleracea, and B. rapa and six copies in the amphidiploid B. juncea. QTLs were detected in two of the three replicated segments in each diploid genome and in three of the six replicated segments in B. juncea. These results indicate that, for the studied trait, multiple QTLs resulting from genome duplication is the rule rather than the exception. Brassica homologues to two candidate genes (CO and FLC) identified from the corresponding A. thaliana region were mapped. CO homologues mapped close to the QTL peaks in eight of nine QTLs, while FLC homologues mapped farther away in those cases where the mapping resolution allowed a comparison. Thus, our data are consistent with the hypothesis that all the major QTLs we detected in the different species of Brassica could be the result of duplicated copies of the same ancestral gene, possibly the ancestor of CO.  相似文献   

11.
A genetic linkage map consisting of 399 RFLP-defined loci was generated from a cross between resynthesized Brassica napus (an interspecific B. rapa x B. oleracea hybrid) and "natural" oilseed rape. The majority of loci exhibited disomic inheritance of parental alleles demonstrating that B. rapa chromosomes were each pairing exclusively with recognisable A-genome homologues in B. napus and that B. oleracea chromosomes were pairing similarly with C-genome homologues. This behaviour identified the 10 A genome and 9 C genome linkage groups of B. napus and demonstrated that the nuclear genomes of B. napus, B. rapa, and B. oleracea have remained essentially unaltered since the formation of the amphidiploid species, B. napus. A range of unusual marker patterns, which could be explained by aneuploidy and nonreciprocal translocations, were observed in the mapping population. These chromosome abnormalities were probably caused by associations between homoeologous chromosomes at meiosis in the resynthesized parent and the F1 plant leading to nondisjunction and homoeologous recombination.  相似文献   

12.
The aim of this work was to find C genome specific repetitive DNA sequences able to differentiate the homeologous A (B. rapa) and C (B. oleracea) genomes of Brassica, in order to assist in the physical identification of B. napus chromosomes. A repetitive sequence (pBo1.6) highly enriched in the C genome of Brassica was cloned from B. oleracea and its chromosomal organisation was investigated through fluorescent in situ hybridisation (FISH) in B. oleracea (2n = 18, CC), B. rapa (2n = 20, AA) and B. napus (2n = 38, AACC) genomes. The sequence was 203 bp long with a GC content of 48.3%. It showed up to 89% sequence identity with telomere-like DNA from many plant species. This repeat was clearly underrepresented in the A genome and the in situ hybridisation showed its B. oleracea specificity at the chromosomal level. Sequence pBo1.6 was localised at interstitial and/or telomeric/subtelomeric regions of all chromosomes from B. oleracea, whereas in B. rapa no signal was detected in most of the cells. In B. napus 18 to 24 chromosomes hybridised with pBo1.6. The discovery of a sequence highly enriched in the C genome of Brassica opens the opportunity for detailed studies regarding the subsequent evolution of DNA sequences in polyploid genomes. Moreover, pBo1.6 may be useful for the determination of the chromosomal location of transgenic DNA in genetically modified oilseed rape.  相似文献   

13.
The close relationship between Brassica oleracea and Arabidopsis thaliana has been used to explore the genetic and physical collinearity of the two species, focusing on an inverted segmental chromosome duplication within linkage group O6 of B. oleracea. Genetic evidence suggests that these segments share a common origin with a region of Arabidopsis chromosome 1. Brassica oleracea and Arabidopsis bacterial artificial chromosome probes have been used for fluorescence in situ hybridization analysis of B. oleracea pachytene chromosomes to further characterize the inverted duplication. This has been highly effective in increasing the local resolution of the cytogenetic map. We have shown that the physical order of corresponding genetic markers is highly conserved between the duplicated regions in B. oleracea and the physical lengths of the regions at pachytene are similar, while the genetic distances are considerably different. The physical marker order is also well conserved between Arabidopsis and B. oleracea, with only one short inversion identified. Furthermore, the relative physical distances between the markers in one segment of B. oleracea and Arabidopsis have stayed approximately the same. The efficacy of using fluorescence in situ hybridization, together with other forms of physical and genetic mapping, for elucidating such issues relating to synteny is discussed.  相似文献   

14.
Over 1000 genetically linked RFLP loci in Brassica napus were mapped to homologous positions in the Arabidopsis genome on the basis of sequence similarity. Blocks of genetically linked loci in B. napus frequently corresponded to physically linked markers in Arabidopsis. This comparative analysis allowed the identification of a minimum of 21 conserved genomic units within the Arabidopsis genome, which can be duplicated and rearranged to generate the present-day B. napus genome. The conserved regions extended over lengths as great as 50 cM in the B. napus genetic map, equivalent to approximately 9 Mb of contiguous sequence in the Arabidopsis genome. There was also evidence for conservation of chromosome landmarks, particularly centromeric regions, between the two species. The observed segmental structure of the Brassica genome strongly suggests that the extant Brassica diploid species evolved from a hexaploid ancestor. The comparative map assists in exploiting the Arabidopsis genomic sequence for marker and candidate gene identification within the larger, intractable genomes of the Brassica polyploids.  相似文献   

15.
Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value < or = 10(-30)) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5' to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5' noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks.  相似文献   

16.
Comparative Genome Mapping in Brassica   总被引:22,自引:0,他引:22       下载免费PDF全文
U. Lagercrantz  D. J. Lydiate 《Genetics》1996,144(4):1903-1910
A Brassica nigra genetic linkage map was developed from a highly polymorphic cross analyzed with a set of low copy number Brassica RFLP probes. The Brassica genome is extensively duplicated with eight distinct sets of chromosomal segments, each present in three copies, covering virtually the whole genome. Thus, B. nigra could be descended from a hexaploid ancestor. A comparative analysis of B. nigra, B. oleracea and B. rapa genomes, based on maps developed using a common set of RFLP probes, was also performed. The three genomes have distinct chromosomal structures differentiated by a large number of rearrangements, but collinear regions involving virtually the whole of each the three genomes were identified. The genic contents of B. nigra, B. oleracea and B. rapa were basically equivalent and differences in chromosome number (8, 9 and 10, respectively) are probably the result of chromsome fusions and/or fissions. The strong conservation of overall genic content across the three Brassica genomes mirrors the conservation of genic content observed over a much longer evolutionary span in cereals. However, the rate of chromosomal rearrangement in crucifers is much higher than that observed in cereal genomes.  相似文献   

17.
The crucifer family includes self-incompatible genera, such as Brassica, and self-fertile genera, such as Arabidopsis. To gain insight into mechanisms underlying the evolution of mating systems in this family, we used a selective comparative mapping approach between Brassica campestris plants homozygous for the S8 haplotype and Arabidopsis. Starting with markers flanking the self-incompatibility genes in Brassica, we identified the homeologous region in Arabidopsis as a previously uncharacterized segment of chromosome 1 in the immediate vicinity of the ethylene response gene ETR1. A total of 26 genomic and 21 cDNA markers derived from Arabidopsis yeast artificial and bacterial artificial chromosome clones were used to analyze this region in the two genomes. Approximately half of the cDNAs isolated from the region represent novel expressed sequence tags that do not match entries in the DNA and protein databases. The physical maps that we derived by using these markers as well as markers isolated from bacteriophage clones spanning the S8 haplotype revealed a high degree of synteny at the submegabase scale between the two homeologous regions. However, no sequences similar to the Brassica S locus genes that are known to be required for the self-incompatibility response were detected within this interval or other regions of the Arabidopsis genome. This observation is consistent with deletion of self-recognition genes as a mechanism for the evolution of autogamy in the Arabidopsis lineage.  相似文献   

18.
The crop species within the genus Brassica have highly replicated genomes. Three base 'diploid' species, Brassica oleracea , B. nigra and B. rapa , are likely ancient polyploids, and three derived allopolyploid species, B. carinata , B. juncea and B. napus , are created from the interspecific hybridization of these base genomes. The base Brassica genome is thought to have hexaploid ancestry, and both recent and ancient polyploidization events have been proposed to generate a large number of genome rearrangements and novel genetic variation for important traits. Here, we revisit and refine these hypotheses. We have examined the B. oleracea linkage map using the Arabidopsis thaliana genome sequence as a template and suggest that there is strong evidence for genome replication and rearrangement within the base Brassicas, but less evidence for genome triplication. We show that novel phenotypic variation within the base Brassicas can be achieved by replication of a single gene, BrFLC , that acts additively to influence flowering time. Within the derived allopolyploids, intergenomic heterozygosity is associated with higher seed yields. Some studies have reported that de novo genomic variation occurs within derived polyploid genomes, whereas other studies have not detected these changes. We discuss reasons for these different findings. Large translocations and tetrasomic inheritance can explain some but not all genomic changes within the polyploids. Transpositions and other small-scale sequence changes probably also have contributed to genomic novelty. Our results have shown that the Brassica genomes are remarkably plastic, and that polyploidy generates novel genetic variation through gene duplication, intergenomic heterozygosity and perhaps epigenetic change.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 665–674.  相似文献   

19.
20.
Since the tetraploidization of the Arabidopsis thaliana ancestor 30-35 million years ago (Mya), a wave of chromosomal rearrangements have modified its genome architecture. The dynamics of this process is unknown, as it has so far been impossible to date individual rearrangement events. In this paper, we present evidence demonstrating that the majority of rearrangements occurred before the Arabidopsis-Brassica split 20-24 Mya, and that the segmental architecture of the A. thaliana genome is predominantly conserved in Brassica. This finding is based on the conservation of four rearrangement breakpoints analysed by fluorescence in situ hybridization (FISH) and RFLP mapping of three A. thaliana chromosomal regions. For this purpose, 95 Arabidopsis bacterial artificial chromosomes (BACs) spanning a total of 8.25 Mb and 81 genetic loci for 36 marker genes were studied in the Brassica oleracea genome. All the regions under study were triplicated in the B. oleracea genome, confirming the hypothesis of Brassica ancestral genome triplication. However, whilst one of the breakpoints was conserved at one locus, it was not at the two others. Further comparison of their organization may indicate that the evolution of the hexaploid Brassica progenitor proceeded by several events, separated in time. Genetic mapping and reprobing with rDNA allowed assignment of the regions to particular Brassica chromosomes. Based on this study of regional organization and evolution, a new insight into polyploidization/diploidization cycles is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号