首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.

Background

While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia.

Methodology/Principal Findings

A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue.

Conclusions/Significance

This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.  相似文献   

5.

Background

Array-based comparative genomic hybridization (aCGH) is a high-throughput method for measuring genome-wide DNA copy number changes. Current aCGH methods have limited resolution, sensitivity and reproducibility. Microarrays for aCGH are available only for a few organisms and combination of aCGH data with expression data is cumbersome.

Results

We present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.

Conclusion

A novel method of gene resolution analysis of copy number variation (graCNV) yields high-resolution maps of DNA copy number changes and is applicable to a broad range of organisms for which commercial oligonucleotide expression microarrays are available. Due to the standardization of oligonucleotide microarrays, graCNV results can reliably be compared between laboratories and can easily be combined with gene expression data using the same platform.  相似文献   

6.

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1125) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that are 20–24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play versatile roles in plants, functioning in processes such as growth, development and stress responses. Chilling is a common abiotic stress that seriously affects plants growth and development. Recently, chilling-responsive miRNAs have been detected in several plant species. However, little is known about the miRNAs in the model plant tomato. ‘LA1777’ (Solanum habrochaites) has been shown to survive chilling stress due to its various characteristics.

Results

Here, two small RNA libraries and two degradome libraries were produced from chilling-treated (CT) and non-chilling-treated (NT) leaves of S. habrochaites seedlings. Following high-throughput sequencing and filtering, 161 conserved and 236 novel miRNAs were identified in the two libraries. Of these miRNAs, 192 increased in the response to chilling stress while 205 decreased. Furthermore, the target genes of the miRNAs were predicted using a degradome sequencing approach. It was found that 62 target genes were cleaved by 42 conserved miRNAs, while nine target genes were cleaved by nine novel miRNAs. Additionally, nine miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). Target gene functional analysis showed that most target genes played positive roles in the chilling response, primarily by regulating the expression of anti-stress proteins, antioxidant enzyme and genes involved in cell wall formation.

Conclusions

Tomato is an important model plant for basic biological research. In this study, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, and the target genes were analyzed by degradome sequencing. The work helps identify chilling-responsive miRNAs in tomato and increases the number of identified miRNAs involved in chilling stress. Furthermore, the work provides a foundation for further study of the regulation of miRNAs in the plant response to chilling stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1130) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
11.

Key message

Through high-throughput sequencing, we compared the relative expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one diploid hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. In addition, unbalanced parental expression level dominance of miRNAs were found in the three allotriploid and interspecific hybrid populations, which may reprogram gene expression networks and contribute to the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among one diploid and three triploid hybrid populations, hinting that miRNA abundances do not increase with the genome content. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the slight decrease in miRNA regulation, suggesting an important molecular mechanism of polyploid advantage.

Abstract

Hybridization with three types of induced 2n gametes transmitted different parental heterozygosities has been proven as an efficient method for Populus triploid production. Several researches have shown that miRNA could be non-additively expressed in allopolyploids. However, it is still unclear whether the non-additively expressed miRNAs result from the effect of hybridization or polyploidization, and whether a dose response to the additional genomic content exists for the expression of miRNA. Toward this end, through high-throughput sequencing, we compared the expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one interspecific hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. Unbalanced parental expression level dominance of miRNAs were found in the three triploid and diploid hybrid populations, which may reprogram gene expression networks and affect the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among the three triploid populations and the diploid hybrid population. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the decrease in miRNA negative regulation, suggesting an important molecular mechanism of polyploid advantage.
  相似文献   

12.

Background  

MicroRNAs(miRNAs) are 18-25 nt small RNAs playing critical roles in many biological processes. The majority of known miRNAs were discovered by conventional cloning and a Sanger sequencing approach. The next-generation sequencing (NGS) technologies enable in-depth characterization of the global repertoire of miRNAs, and different protocols for miRNA library construction have been developed. However, the possible bias between the relative expression levels and sequences introduced by different protocols of library preparation have rarely been explored.  相似文献   

13.
14.

Background

miRNAs are 17–25 nucleotides long RNA molecules that have been found to regulate gene expression in human cells. There are studies showing that different groups of miRNAs are involved in development of different tissues. In hepatocytes there are reported particular types of miRNAs that regulate gene expression.

Methods

We established a human fetal liver cDNA library by a modified cloning protocol. Then plasmid isolation from the colonies was performed. After sequencing and database searching, the miRNAs were recognized. RT-PCR and sequencing were carried out to validate the miRNAs detected. Real-time PCR was used to analyze the expression of each miRNA.

Results

One novel miRNA was discovered, together with another 35 previously-known miRNAs in the fetal liver. Some of them existed in variants. The miRNAs identified were validated by RT-PCR and sequencing. Quantitative analysis showed that they have variable expression.

Conclusion

Our results indicate that a special group of miRNAs may play an important role in fetal liver development in a synergistic manner.  相似文献   

15.

Background  

New rapid high-throughput sequencing technologies have sparked the creation of a new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their output, short-read assemblers must be designed to account for this error while utilizing all available data.  相似文献   

16.
17.
18.

Background  

We study the statistical properties of fragment coverage in genome sequencing experiments. In an extension of the classic Lander-Waterman model, we consider the effect of the length distribution of fragments. We also introduce a coding of the shape of the coverage depth function as a tree and explain how this can be used to detect regions with anomalous coverage. This modeling perspective is especially germane to current high-throughput sequencing experiments, where both sample preparation protocols and sequencing technology particulars can affect fragment length distributions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号