共查询到20条相似文献,搜索用时 15 毫秒
1.
For a plasma with confined in a system of two simple axisymmetric mirror cells separated by a divertor cell, a radial plasma pressure profile is obtained that is stable against convective modes and drops off to zero at the separatrix. The shape of the marginally stable pressure profile depends on the geometric parameters (such as mirror ratios and the localization of the divertor cell), the ratio of the pressure in the mirrors cells to the pressure in the divertor cell, and the degree of pressure anisotropy. 相似文献
2.
The Kruskal-Oberman kinetic model is used to determine the conditions for the convective stability of a plasma in a system of coupled axisymmetric adiabatic open cells in which the magnetic field curvature has opposite signs. For a combination of a nonparaxial simple mirror cell and a semicusp, the boundaries of the interval of values of the flux coordinate where the plasma can be stable are determined, as well as the range in which the ratio of the pressures in the component cells should lie. Numerical simulations were carried out for different particle distributions over the pitch angle. 相似文献
3.
V. V. Arsenin 《Plasma Physics Reports》2008,34(5):349-354
A set of linear integrodifferential equations is presented for the plasma displacement components that minimize the Kruskal-Oberman functional of the potential energy of an MHD perturbation. Marginal stability results when the smallest eigenvalue of this set of equations is zero. 相似文献
4.
The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model. 相似文献
5.
A. A. Skovoroda 《Plasma Physics Reports》2016,42(5):514-522
Bifurcation of solutions to the Grad–Shafranov-type equation for helically symmetric plasma near the threshold for tearing instability are analyzed. Quadratic and cubic nonlinearities were added to the linear dependence of the current density on the helical flux. Depending on the character of nonlinearity, two types of bifurcation can be observed, the “small” and the “large” ones. The small bifurcation is typical of cubic nonlinearity and reveals itself in the growth of the magnetic island from zero as the profile parameter increases above the instability threshold. The large bifurcation is typical of quadratic nonlinearity and causes jumplike formation of a large-scale magnetic island upon exceeding the instability threshold. As the profile parameter decreases below the instability threshold, the large-scale island continues to persist for some time (the hysteresis effect) and then suddenly disappears. 相似文献
6.
The waveguide properties of two characteristic formations in the Earth’s magnetotail—the plasma sheet and the current (neutral) sheet—are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper. 相似文献
7.
The equilibrium of a plasma with isotropic pressure in a periodic divertor configuration with a poloidal magnetic field is calculated. The issue of how the plasma equilibrium changes as the parameter β≡8πp/B 2 increases is considered for a fairly representative class of pressure profiles p(ψ) (where ψ is the flux coordinate). It is shown that the plasma can be in equilibrium up to β values (in terms of the vacuum magnetic field at the divertor axis) on the order of unity. 相似文献
8.
A. A. Skovoroda 《Plasma Physics Reports》2005,31(2):110-122
The effect of very small rotational transform on the plasma stability in three-dimensional closed magnetic configurations with closed magnetic field lines, stabilized by the magnetic hill (i.e., by the plasma compressibility), is considered using ideal MHD theory. It is shown that, for infinitely small values of the rotational transform, the Suydam-Mercier criterion predicts the onset of acoustic instability with a finite growth rate, provided that the Bernstein-Kadomtsev criterion is satisfied. Consequently, for a vanishingly small rotational transform, the limiting transition from the Suydam-Mercier criterion to the Bernstein-Kadomtsev criterion is impossible. Taking into account the finite Larmor radius allows this limiting transition to be made. The Bernstein-Kadomtsev criterion ensures MHD stability at rotational transform values below a certain critical value determined by the ratio of the ion Larmor radius to the plasma minor radius. Under experimental conditions, this critical value is larger than that expected to be produced by the actual magnetic perturbations. 相似文献
9.
A new method for processing experimental data from MHD diagnostics is discussed that provides a more detailed study of the dynamics of large-scale MHD instabilities. The method is based on the Hilbert-Huang transform method and includes an empirical mode decomposition algorithm, which is used to decompose the experimental MHD diagnostic signals into a set of frequency-and amplitude-modulated harmonics in order to construct the time evolutions of the amplitudes and frequencies of these harmonics with the help of the Hilbert transform. The method can also be applied to analyze data from other diagnostics that measure unsteady oscillating signals. 相似文献
10.
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of μ (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.). 相似文献
11.
K. P. Kirdyashev 《Plasma Physics Reports》2011,37(8):715-722
Results of experimental studies of the effect of an external RF field on the excitation of oscillations in a magnetoplasmadynamic
plasma accelerator are presented. It is found that applying an RF field can suppress the drift component of low-frequency
oscillations in the ejected plasma flow. The experimental data agree with the concept of stabilization of the plasma accelerator
by the magnetic component of the field generated by the RF current loop. The conditions under which the RF field stabilizes
the generation of the plasma flow are determined, and the factors limiting the stabilization efficiency are revealed. 相似文献
12.
A study is made of the MHD stability of a collisionless anisotropic-pressure plasma in a nonparaxial magnetic configuration with an internal conductor in cylindrical geometry. A stability criterion for flutelike modes is obtained, and the families of marginally stable profiles of the longitudinal and transverse plasma pressures are calculated by using the Chew-Goldberger-Low anisotropic MHD equations. Possible marginally stable plasma states are considered with allowance for the expected turbulent relaxation and self-organization processes, on the one hand, and isotropization processes, on the other. A stability criterion for Alfvén modes is also derived in the Chew-Goldberger-Low model. 相似文献
13.
The linear propagation of the dust-acoustic (DA) waves in a nonuniform adiabatic dusty plasma, which consists of inertialess adiabatic electrons, inertialess adiabatic ions, and inertial negatively charged dust by taking into account the effects of polarization force, is theoretically investigated. It is found that the linear dispersion properties of the DA waves are significantly modified by the dust density nonuniformity, adiabaticity of electrons and ions, and the effects of the polarization force. It is shown that the phase speed of the DA waves is increased with the increase of adiabaticity of electrons and ions but decreased with the increase of the effects of polarization force. It is also shown that the dust density is enhanced with the increase of adiabatic index but depleted with the increase of polarization force. The scenarios relevant to dust-ion plasma in space environments are briefly addressed. 相似文献
14.
Plasma flows caused by the interaction of the discharge current with the azimuthal magnetic self-field in coaxial channels (nozzles) of plasma accelerators are strongly affected by the longitudinal field produced by external conductors. A two-dimensional MHD model of flows in channels in the presence of a longitudinal magnetic field is proposed. Depending on the ratio between the characteristic values of the longitudinal and azimuthal field components, one of three types of flow is established in the channel: super-Alfvén, sub-Alfvén, or combined. The properties of different types of flows are analyzed. The acceleration process in sub-Alfvén flows differs qualitatively from that in regimes without a longitudinal field in transitions between the kinetic, thermal, and magnetic energy components. 相似文献
15.
P. V. Savrukhin 《Plasma Physics Reports》2001,27(9):727-732
Mechanisms for the development of quasistatic MHD perturbations in a viscous rotating tokamak plasma are considered. The influence of stray magnetic fields on the stability of MHD modes in the plasma of the TFTR tokamak is analyzed. 相似文献
16.
The basic properties of heavy-ion-acoustic (HIA) waves have been investigated in a collisionless plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The Kortewg-de Vries and Burgers equations are derived in nonplanar (cylindrical and spherical) geometry by employing the standard reductive perturbation method for studying the basic features (viz. amplitude, phase speed, etc.) of HIA solitary and shock waves, which are associated with either positive or negative potential. It is found that the effects of nonplanar geometry, adiabaticity of positively charged inertial heavy ions, the presence of nonthermal (Cairns distributed) electrons, and number densities of the plasma components significantly modify the basic features of nonplanar HIA waves. It has been observed that the properties of solitary and shock waves associated with HIA waves in a nonplanar geometry differ from those in a planar geometry. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments. 相似文献
17.
The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coordinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the singularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial component of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magnetosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector approaches infinity, rather than vanishes as in the case with a homogeneous field. 相似文献
18.
The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement. 相似文献
19.
Su W Boursier L Padala A Sanderson JD Spencer J 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(4):2360-2366
Human intestinal lamina propria plasma cells are considered to be the progeny of chronically stimulated germinal centers located in organized gut-associated lymphoid tissues such as Peyer's patches and isolated lymphoid follicles. We have sampled human colonic lamina propria plasma cells and naive and memory B cell subsets from human Peyer's patches by microdissection of immunohistochemically stained tissue sections and used PCR methods and sequence analysis to compare IgVlambdaJlambda rearrangements in the plasma cell and B cell populations. Rearrangements that were either in-frame or out-of-frame between V and J were compared. Usage of IgVlambda families in the in-frame rearrangements from the plasma cells resembled that observed in the mantle cells, suggesting that antigenic selection for cellular specificity does not dramatically favor any particular Vlambda segment. However, in marked contrast, out-of-frame rearrangements involving Vlambda1 and Vlambda2 families are rarely observed in intestinal plasma cells, whereas rearrangements involving Vlambda5 are increased. This resulted in significantly biased ratios of in-frame:out-of-frame rearrangements in these Vlambda families. Out-of-frame rearrangements of IgVlambdaJlambda from plasma cells, including those involving the Vlambda5 family, have a significant tendency not to involve Jlambda1, consistent with the hypothesis that this population includes rearrangements generated by secondary recombination events. We propose that modification of out-of-frame rearrangements of IgVlambdaJlambda exists, probably a consequence of secondary rearrangements. This may be a mechanism to avoid translocations to susceptible out-of-frame IgVlambdaJlambda rearrangements during somatic hypermutation. 相似文献
20.
Yu. A. Tsidulko 《Plasma Physics Reports》2016,42(6):559-565
A model of field reversal by fast ions has been developed under the assumption of preservation of fast-ion adiabatic invariants. Analytical solutions obtained in the approximation of a narrow fast-ion layer and numerical solutions to the evolutionary problem are presented. The solutions demonstrate the process of formation of a field reversed configuration with parameters close to those of the planned experiment. 相似文献