首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   

2.
-Eight metabolites were measured in the post-ischemic period following either 1 or 3 h of unilateral ischemia in the gerbil cerebral cortex. The levels of ATP, P-creatine, glucose, glycogen and GABA were essentially restored by 1 h after ischemia. In the 3 h ischemic animals. glycogen continued to increase to greater than control values aftcr 5 and 20 h of recirculation. The Icvels of glutamate were unchanged during the ischemic episode, but decreased to 60% of control at Smin and 1 h after either period of ischemia. The concentrations of cyclic AMP, which were 4-to 5-fold elevated during ischemia. increased an additional 6-fold 5 min after recirculation in both groups. Arter 1 h of recovery. the levels were not different from control values. After the 1 h ischemic period, lactate levels recovered between 5 and 20 h of recirculation. In the 3 h ischemic animals. lactate concentrations were still elevated even after 20 h of recirculation. These data suggest that with the exception of lactate. recovery of metabolites is not sevcrely compromiscd by either 1 or 3 h of ischemia. Furthermore, the changes in glycogen. glutamate and cyclic AMP after recirculation suggest that the recovery process is not just a rcversal of the changes observed during ischemia.  相似文献   

3.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

4.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

5.
Abstract— The effects of 10−5 m -noradrenaline (NA), 5-hydroxytryptamine (5-HT) and dopamine (DA) on the activities of Na+-K+ ATPase (EC 3.6.1.3) were studied in synaptic membranes from 6 regions of the rabbit brain. NA and 5-HT stimulated the synaptic membrane Na+-K+ ATPase from the cerebrum, but none of the amines influenced the activity of this enzyme in the other brain regions. The Na+-K+ ATPase activity of the cerebral synaptic membrane isolated at the 0.8/0.9 m & 0.9/1.0 m interphase of a sucrose density gradient was increased two-fold by 10−5 m -NA and 5-HT. The Na+-K + ATPase recovered at the 1.0/1.2 m interphase was not influenced by NA, DA or 5-HT. NA, DA and 5-HT did not activate the Mg ATPase of synaptic membranes from any of the 6 brain regions or whole brain synaptic vesicles. The cortex synaptic membrane (Na+-K+) ATPase is postulated to have a direct role in the uptake of the biogenic amines. An indirect role is proposed for this enzyme in amine uptake into brain stem.  相似文献   

6.
Ears of wheat plants ( Triticum aestivum L. cv. Kolibri), which were given different and uniform K+-nutrition in two experiments, were cut at 2, 4 and 6 weeks after anthesis at 15 cm below the ear. These detached ears were fed 30 m M (experiment 1) or 15, 30, 60 or 90 m M 86Rb-K2 malate (experiment 2) and 146 m M [14C]-sucrose. After a pulse period of 6 and 4 h, respectively, the ears were transferred to identical non-labeled solutions for additional 0, 4, 8 or 20 h.
About 50% of the K+ and sucrose supplied was absorbed by detached ears. This rate declined with plant age and decreasing transpiration. Within the 6 and 4 h uptake period less than 7% of the absorbed K+, but 20% of the sucrose taken up were incorporated into the grain. During the chase period labeled K+ in the grain increased to 15% and 14C even to 50% of total tracer uptake. Incorporation of labeled K+ into the grain was not affected by the previous K+ nutrition of the plant and was proportional to the K+ concentration in the uptake solution. Transition of K+ from xylem into phloem during its acropetal transport is assumed. No evidence was found that the grain itself could control its uptake of K+.  相似文献   

7.
Abstract: Treatment of cultured bovine adrenal chromaffin cells with 12- O -tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C (PKC), decreased [3H]saxitoxin ([3H]STX) binding in a concentration (IC50 = 19 n M )- and time ( t 1/2 = 4.5 h)-dependent manner. TPA (100 n M for 15 h) lowered the B max of [3H]STX binding by 53% without altering the K D value. Phorbol 12,13-dibutyrate (PDBu) also reduced [3H]STX binding, whereas 4α-TPA, an inactive analogue, had no effect. The inhibitory effect of TPA was abolished when H-7 (an inhibitor of PKC), but not H-89 (an inhibitor of cyclic AMP-dependent protein kinase), was included in the culture medium for 1 h before and during TPA treatment. Simultaneous treatment with TPA in combination with either actinomycin D or cycloheximide, an inhibitor of protein synthesis, nullified the effect of TPA. TPA treatment also attenuated veratridine-induced 22Na+ influx but did not alter the affinity of veratridine for Na channels as well as an allosteric potentiation of veratridine-induced 22Na+ influx by brevetoxin. These results suggest that an activation of PKC down-regulates the density of Na channels without altering their pharmacological features; this down-regulation is mediated via the de novo synthesis of an as yet unidentified protein(s), rather than an immediate effect of Na channel phosphorylation.  相似文献   

8.
Influx, efflux and translocation of K+(86Rb) were studied in the roots of sunflower seedlings ( Helianthus annuus L. cv. Uniflorus) treated with 0–4.0 m M NO3 during a 9 day growth period or a 24 h pretreatment period. Roots treated with high levels of NO3 absorbed and translocated more K+(86Rb) than seedlings treated with low levels of NO3. The content of K+ in the shoots was, however, higher in seedlings treated with low levels of NO3, indicating a low rate of retranslocation of K+ in those plants. K+(86Rb) efflux was highest into the low-NO3 solutions. All effects on K+(86Rb)-fluxes were more obvious in high-K plants than in low-K plants. The results are discussed in relation to the Dijkshoorn-Ben Zioni hypothesis for K++ NO3-uptake and translocation in plants.  相似文献   

9.
Abstract— The rate of efflux of 45Ca2+ from slices of rat cerebral cortex was resolved into two exponential curves which were attributed to an extracellular component and an intracellular or bound component. Electrical stimulation increased efflux of 45Ca2+ from the more stable pool and the time course for the redistribution of Na+ and K+ paralleled that for the increased efflux of Ca2+. This effect of stimulationwas dependent on the presence of Na+ in the incubation medium. Lack of Na+ in the medium during loading of the slices with 45Ca2+ increased uptake but on subsequent transfer to a medium containing Na+, electrical pulses failed to increase the rate of efflux of 45Ca2+. In unstimulated slices, the rate of efflux of 45Ca2+ was dependent upon the concentration ratio of Na+ to Ca2+ in the incubation medium. Saxitoxin and tetrodotoxin inhibited the increased efflux of 45Ca2+ that occurred during electrical stimulation but exerted no effect on Ca2+-Ca2+ exchange. Our results suggest that there is a Na+-dependent turnover of Ca2+ in brain slices which may involve changes in affinity at a common binding site. The possible involvement of such a Na+-Ca2+ interaction in the regulation of neurotransmitter function is discussed.  相似文献   

10.
Abstract: The effect of melatonin on [3H]glutamate uptake and release in the golden hamster retina was studied. In retinas excised in the middle of the dark phase, i.e., at 2400 h, melatonin (0.1 and 10 n M ) significantly increased [3H]glutamate uptake, and this effect persisted in a Ca2+-free medium. On the other hand, melatonin significantly increased [3H]glutamate release in retinas excised at 2400 h, but this effect was Ca2+ sensitive. Melatonin significantly increased 45Ca2+ uptake by a crude synaptosomal fraction from retinas of hamsters killed at 2400 h. In retinas excised at 1200 h, melatonin had no effect on [3H]glutamate uptake, [3H]glutamate release, or 45Ca2+ uptake at any concentration tested. Cyclic GMP analogues, i.e., 8-bromoguanosine 3',5'-cyclic monophosphate and 2'- O -dibutyrylguanosine 3',5'-cyclic monophosphate, significantly increased [3H]glutamate uptake, [3H]glutamate release, and 45Ca2+ uptake by tissue removed at 1200 and 2400 h, suggesting that the effects of melatonin could correlate with a previously described effect of melatonin on cyclic GMP levels in the golden hamster retina. Taking into account the key role of glutamate in visual mechanisms, the results suggest the participation of melatonin in retinal physiology.  相似文献   

11.
Abstract: Cell dissociates from embryonic chick dorsal root ganglia, incubated for 6 h with 22Na+, accumulated four to six times more radioactivity in the absence than in the presence of Nerve Growth Factor (NGF). The accumulation of radioactivity paralleled the external Na+ concentration, indicating that the cells may have been reaching equilibrium with the medium. Delayed presentation of NGF to 22Na+-loaded cells caused a rapid loss of radioactivity, even with extracellular 22Na+ still present, demonstrating that NGF caused an overall efflux of Na+ rather than an accelerated equilibration. The Na+ exclusion from 22Na+-loaded cells was dependent upon NGF concentration. Use of nutrient-rich medium, serum, and certain hormones and other proteins did not prevent the Na+ accumulation in the absence of NGF or its reversion by delayed NGF administration. Incubation of the ganglionic cells with ouabain or dinitrophenol during the 22Na+ loading period (no NGF) increased the rate, but not the magnitude, of loading. The same incubation carried out in a Na+-free medium and followed by 22Na+ presentation resulted in fast radioactive loading that was identical to that occurring in drug-free, NGF-deprived cells and was not prevented by presentation of NGF together with the 22Na+. These data are consistent with a model in which NGF acts through a Na+ pump rather than by restricting Na+ influxes.  相似文献   

12.
Abstract: To clarify the regulatory mechanism of the N -methyl- d -aspartate (NMDA) receptor/channel by several protein kinases, we examined the effects of purified type II of protein kinase C (PKC-II), endogenous Ca2+/calmodulin-dependent protein kinase II (CaMK-II), and purified cyclic AMP-dependent protein kinase on NMDA receptor/ channel activity in the postsynaptic density (PSD) of rat brain. Purified PKC-II and endogenous CaMK-II catalyzed the phosphorylation of 80–200-kDa proteins in the PSD and l -glutamate-(or NMDA)-induced increase of (+)-5-[3H]methyl-10, 11-dihydro-5 H -dibenzo[a, d]cyclohepten-5, 10-imine maleate ([3H]MK-801; open channel blocker for NMDA receptor/channel) binding activity was significantly enhanced. However, the pretreatment of PKC-II-and CaMK-II-catalyzed phosphorylation did not change the binding activity of l -[3H]glutamate, cis -4-[3H](phospho-nomethyl)piperidine-2-carboxylate ([3H]CGS-19755; competitive NMDA receptor antagonist), [3H]glycine, α-[3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, or [3H]-kainate in the PSD. Pretreatment with PKC-II-and CaMK-II-catalyzed phosphorylation enhanced l -glutamate-induced increase of [3H]MK-801 binding additionally, although purified cyclic AMP-dependent protein kinase did not change l -glutamate-induced [3H]MK-801 binding. From these results, it is suggested that PKC-II and/or CaMK-II appears to induce the phosphorylation of the channel domain of the NMDA receptor/channel in the PSD and then cause an enhancement of Ca2+ influx through the channel.  相似文献   

13.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

14.
Abstract: D1-and D2-dopamine receptors exert important physiological actions on striatal neurons, but the intracellular second messenger pathways activated by these receptors are still incompletely understood. Using primary cultures of rat striatal cells, we have examined the effects of activating D1 or D2 receptors on arachidonic acid (AA) release and cyclic AMP accumulation. In striatal neurons labeled by incubation with [3H]AA, D2-receptor stimulation enhanced release of [3H]AA produced by application of the Ca2+ ionophore A23187 or of the purinergic agonist ATP. By contrast, D1-receptor stimulation inhibited [3H]AA release. This inhibitory effect of D1 receptors was accompanied by stimulation of adenylyl cyclase activity, measured as accumulation of cyclic AMP, and was mimicked by application of the adenylyl cyclase activator forskolin. The results indicate the existence of a novel signaling pathway for D2 and D1 receptors in striatum, potentiation and inhibition, respectively, of Ca2+-evoked AA release.  相似文献   

15.
Coccolithophorids are marine unicellular algae characterized by their ability to carry out controlled, subcellular calcification. The biochemical and kinetic features of membrane-bound Ca2+-stimulated ATPases have been examined. Membranes and organelles from axenic cultures of Pleurochrysis sp. (CCMP299) were isolated by means of sucrose density centrifugation. High levels of Ca2+-stimulated ATPase were detected in chloroplasts, Golgi apparatus, plasma membrane, and coccolith vesicles. The sensitivity of the enzyme activity in the organelles and membranes was assessed with pharmacologic agents that are known to be specific for the several isoforms of Ca2+-stimulated ATPase. The Ca2+-stimulated ATPase activity in the Golgi and coccolith vesicle preparations was sensitive to nitrate, thiocyanate, and sodium azide and insensitive to vanadate, cyclopiazonic acid, and thapsigargin. ATP-dependent H+ movement, but not 45Ca2+ transport, across the coccolith vesicle was demonstrated. The Ca2+-stimulated ATPase in the plasma membrane preparation was sensitive to vanadate. ATP-dependent, vanadate-sensitive efflux of 45Ca2+ was demonstrated for microsomal material derived from gradient-isolated plasma membrane. Polypeptides from isolated Golgi and coccolith vesicle preparations cross-reacted to an antibody raised against a subunit of the oat root proton pump, whereas polypeptides from the chloroplast preparations did not cross-react. These findings show that a V-type Ca2+-stimulated ATPase is located on the coccolith vesicle membrane and a P-type Ca2+-stimulated ATPase is located on the plasma membrane.  相似文献   

16.
Calmodulin and calmodulin-mediated processes in plants   总被引:11,自引:3,他引:8  
Abstract. The Ca2+ -binding protein calmodulin is found in all plants investigated so far. The comparison of the biochemical and functional properties reveals that it is structurally conserved and functionally preserved throughout the plant and animal kingdom. Among the plant enzymes so far known to be dependent on the Ca2+ -calmodulin complex are NAD kinase(s), Ca2+ -transport ATPase, quinate: NAD+ oxidoreductase, soluble and membrane bound protein kinases, and H+ -transport ATPase. Calmodulin may play also an important role in the regulation of other cellular reactions, such as hormone-mediated processes, secretion of enzymes, and contractile mechanisms. On the basis of the NAD kinase and its regulation by light and Ca2+ -calmodulin, it is suggested that changes in the cellular, free Ca2+ concentration following stimulation may alter the metabolism of a plant cell. According to this suggestion free Ca2+ may act as a second messenger in plants much as it does in animal cells.  相似文献   

17.
Abstract– Ca2+-stimulated ATPase activity was studied in membrane enriched preparations from the brains of audiogenic seizure-prone (DBA) and control (C57 and C3H) mice. The animals ranged in age from 7 to 60 days. Na+, K + -ATPase, 5'-nucleotidase and p -nitrophenylphosphatase were assayed to evaluate membrane integrity.
Ca2+-ATPase was significantly lower in DBA mice; notably during the period of maximal seizure sensitivity. Mg2+ -ATPase somewhat followed the pattern shown by Ca2+ -ATPase. Na+, K+ -ATPase in DBA did not differ significantly from controls and there were no differences in either 5'-nucleotidase or p-nitrophenylphosphatase activities.
Ca2+-ATPase kinetics experiments showed even more clearly the difference between DBA and control preparations. Vmax was consistently lower in DBA than in controls. The Km values appeared to fall into groupings suggestive of sequential synthesis of isozymes. Differences in the patterns of DBA and C57 just prior to the time of maximal seizure sensitivity are interpreted as reflecting failure to synthesize an isozyme or delay of its synthesis. The genesis of seizures through such an enzymatic defect may be related to the action of translocated ATP on the plasma membrane.  相似文献   

18.
Abstract: As cerebral neurons express the dopamine D1 receptor positively coupled with adenylyl cyclase, together with the D3 receptor, we have investigated in a heterologous cell expression system the relationships of cyclic AMP with D3 receptor signaling pathways. In NG108-15 cells transfected with the human D3 receptor cDNA, dopamine, quinpirole, and other dopamine receptor agonists inhibited cyclic AMP accumulation induced by forskolin. Quinpirole also increased mitogenesis, assessed by measuring [3H]thymidine incorporation. This effect was blocked partially by genistein, a tyrosine kinase inhibitor. Forskolin enhanced by 50–75% the quinpirole-induced [3H]thymidine incorporation. This effect was maximal with 100 n M forskolin, occurred after 6–16 h, was reproduced by cyclic AMP-permeable analogues, and was blocked by a protein kinase A inhibitor. Forskolin increased D3 receptor expression up to 135%, but only after 16 h and at concentrations of >1 µ M . Thus, in this cell line, the D3 receptor uses two distinct signaling pathways: it efficiently inhibits adenylyl cyclase and induces mitogenesis, an effect possibly involving tyrosine phosphorylation. Activation of the cyclic AMP cascade potentiates the D3 receptor-mediated mitogenic response, through phosphorylation by a cyclic AMP-dependent kinase of a yet unidentified component. Hence, transduction of the D3 receptor can involve both opposite and synergistic interactions with cyclic AMP.  相似文献   

19.
Abstract: Soluble and membrane fractions of bovine adrenal medulla contain several substrates for the Ca2+/ phospholipid-dependent and cyclic AMP-dependent protein kinases. The phosphorylation of soluble proteins (36 and 17.7 kilodaltons) and a membrane protein (22.5 kilo-daltons) showed an absolute requirement for the presence of both Ca2+ and phosphatidylserine; other substrates showed less stringent phosphorylation requirements and many of these proteins were specific for each of the protein kinases. The Ca2+/phospholipid-dependent phosphorylation was rapid, with effects seen as early as at 30 s of incubation. Measurement of enzyme activities with histone HI as an exogenous substrate demonstrated that the Ca2+/phospholipid-dependent protein kinase was equally distributed between the soluble and membrane fractions whereas the cyclic AMP-dependent enzyme was predominantly membrane-bound in adrenal medulla and chromaffin cells. The activity of the soluble Ca2+/phos-pholipid-dependent protein kinase of adrenal medulla was found to be about 50% of the enzyme level present in rat brain, a tissue previously shown to contain a very high enzyme activity. These results suggest a prominent role for the Ca2+/phospholipid-dependent protein kinase in chromaffin cell function.  相似文献   

20.
Abstract Sucrose density fractionation of yeast membranes revealed two major and two minor peaks of 45Ca2+ transport activity which all co-migrate with marker enzymes of the endoplasmic reticulum, Golgi and membranes associated with these compartments as well as with ATPase activity measured when all other known ATPase are inhibited. Co-migration of 45Ca2+ transport and ATPase activities was also found after removal of plasma membranes by concanavalin A treatment. SDS-PAGE at pH 6.3 shows the Ca2+-dependent formation of acyl phosphate polypeptides of about 110 and 200 kDa. It is concluded that several compartments or sub-compartments of yeast are equipped with Ca2+-ATPase(s). It is proposed that these compartments are derived from the protein secretory apparatus of yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号