首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper explores the relationship between the genetic diversity of rhizobia and the morphological diversity of their plant hosts. Rhizobium galegae strains were isolated from nodules of wild Galega orientalis and Galega officinalis in the Caucasus, the center of origin for G. orientalis. All 101 isolates were characterized by genomic amplified fragment length polymorphism fingerprinting and by PCR-restriction fragment length polymorphism (RFLP) of the rRNA intergenic spacer and of five parts of the symbiotic region adjacent to nod box sequences. By all criteria, the R. galegae bv. officinalis and R. galegae bv. orientalis strains form distinct clusters. The nod box regions are highly conserved among strains belonging to each of the two biovars but differ structurally to various degrees between the biovars. The findings suggest varying evolutionary pressures in different parts of the symbiotic genome of closely related R. galegae biovars. Sixteen R. galegae bv. orientalis strains harbored copies of the same insertion sequence element; all were isolated from a particular site and belonged to a limited range of chromosomal genotypes. In all analyses, the Caucasian R. galegae bv. orientalis strains were more diverse than R. galegae bv. officinalis strains, in accordance with the gene center theory.  相似文献   

2.
3.
AIMS: Thirty-three rhizobial strains isolated from nodules of Caragana intermedia in Maowusu sandland were examined for their genetic diversity and putative phylogenetic position. METHODS AND RESULTS: Isolates from Caragana intermedia were classified into 12 genotypes by 16S rDNA polymerase chain reaction-restriction fragment length polymorphism (RFLP), which showed no distinct relationships with those of the reference strains. The genotypes of rhizobia were not related to geographical location. Thr 16S rDNA sequence of representative strain GH2001 from dominant genotype 2 shared high homologuey with some Rhizobium species: Rh. giardinii (96.4%), Rh. huautlense (95.3%), Rh. galegae (95.7%), Rh. yanglingense (95.2%), Rh. mongolense (95.6%), Rh. radiobacter (99%) and Rh. rubi (98.3%). CONCLUSIONS: A high degree of genetic diversity existed among rhizobia nodulating Caragana intermedia in Maowusu sandland. Most of the new isolates might belong to Rhizobium. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the rich diversity of rhizobia might have contributed to the adaptation of the arid region. These strains could be valuable at the economic and ecosystem level.  相似文献   

4.
Twenty-six Rhizobium galegae strains, representing the center of origin of the host plants Galega orientalis and G. officinalis as well as other geographic regions, were used in a polyphasic analysis of the relationships of R. galegae strains. Phage typing, lipopolysaccharide (LPS) profiling, pulsed field gel electrophoresis (PFGE) profiling and rep-PCR (use of repetitive sequences as PCR primers for genomic fingerprinting) with REP and ERIC primers investigated nonsymbiotic properties, whereas plasmid profiling and hybridisation with a nif gene probe, and with nodB, nodD, nod box and an IS sequence from the symbiotic region as probes, were used to reveal the relationships of symbiotic genes. The results were used in pairwise calculations of distances between the strains, and the distances were visualised as a dendrogram. Indexes of association were compared for all tests pooled, and for chromosomal tests and symbiotic markers separately, to display the input of the different categories of tests on the grouping of the strains. Our study shows that symbiosis related genetic traits in R. galegae divide strains belonging to the species into two groups, which correspond to strains forming an effective symbioses with G. orientalis and G. officinalis respectively. We therefore propose that Rhizobium galegae strains forming an effective symbiosis with Galega orientalis are called R. galegae bv. orientalis and strains forming an effective symbiosis with Galega officinalis are called R. galegae bv. officinalis.  相似文献   

5.
Rhizobia are soil bacteria able to fix atmospheric nitrogen in symbiosis with leguminous plants. In response to a signal cascade coded by genes of both symbiotic partners, a specific plant organ, the nodule, is formed. Rhizobial nodulation (nod) genes trigger nodule formation through the synthesis of Nod factors, a family of chitolipooligosaccharides that are specifically recognized by the host plant at the first stages of the nodulation process. Here, we present the organization and sequence of the common nod genes from Rhizobium galegae, a symbiotic member of the RHIZOBIACEAE: This species has an intriguing phylogenetic position, being symbiotic among pathogenic agrobacteria, which induce tumors instead of nodules in plant shoots or roots. This apparent incongruence raises special interest in the origin of the symbiotic apparatus of R. galegae. Our analysis of DNA sequence data indicated that the organization of the common nod gene region of R. galegae was similar to that of Sinorhizobium meliloti and Rhizobium leguminosarum, with nodIJ downstream of nodABC and the regulatory nodD gene closely linked to the common nod operon. Moreover, phylogenetic analyses of the nod gene sequences showed a close relationship especially between the common nodA sequences of R. galegae, S. meliloti, and R. leguminosarum biovars viciae and trifolii. This relationship in structure and sequence contrasts with the phylogeny based on 16S rRNA, which groups R. galegae close to agrobacteria and separate from most other rhizobia. The topology of the nodA tree was similar to that of the corresponding host plant tree. Taken together, these observations indicate that lateral nod gene transfer occurred from fast-growing rhizobia toward agrobacteria, after which the symbiotic apparatus evolved under host plant constraint.  相似文献   

6.
The aim of this work is to describe the diversity of potentially symbiotic bacteria associated with the invasive introduced legume Robinia pseudoacacia in China. Thirty-three isolates from 33 separate trees and nodules were characterized using restriction length fragment polymorphism and sequencing of 16S rRNA, nodA, nodC and nifH genes. Their 16S rRNA gene patterns and sequences placed them in three clades: 85% of isolates were related to the Mesorhizobium mediterraneum/temperatum group, whereas the remaining were similar either to Mesorhizobium amorphae or to Sinorhizobium meliloti . However, despite their diverse taxonomic positions, the nodA, nodC and nifH genes' phylogenies indicated that these R. pseudoacacia symbionts share similar symbiosis genes, implying gene transfers and a degree of host specificity. Comparison of R. pseudoacacia symbiotic diversity in native and other invaded areas suggests that most Chinese symbionts may not have arrived with the seed but were local bacteria that acquired specific symbiotic genes from native American rhizobia.  相似文献   

7.
8.
The legume genus Medicago interacts with soil bacteria commonly referred to as rhizobia, in a nitrogen fixing symbiosis. We analysed the diversity of symbiotic association specificity among the two organisms, and its evolution in the plant genus. Nitrogen fixation tests and molecular phylogenetic reconstructions revealed that the genus Medicago includes more symbiotic specificity groups than previously suggested and that plant specificity is highly unstable and has repeatedly switched along the diversification of this genus. A phylogenetic analysis including geographical data shows that bacterial geographical diversity distribution has a strong influence on the geographic distribution of plant species and their ability to colonize new areas. Multiple other modifications of specificity occurred along the diversification of the genus, presumably due to selection for specialization to a single bacterial biovar. Codivergence between plants and bacteria may also have taken place.  相似文献   

9.
10.
In the framework of soil phytoremediation using local legume plants coupled with their native root-nodulating bacteria to increase forage yields and preserve contaminated soils in arid regions of Tunisia, we investigated the diversity of bacteria from root nodules of Lathyrus sativus, Lens culinaris, Medicago marina, M. truncatula, and M. minima and the symbiotic efficiency of these five legume symbiosis under Cadmium stress. Fifty bacterial strains were characterized using physiological and biochemical features such heavy metals resistant, and PCR-RFLP of 16S rDNA. Taxonomically, the isolates nodulating L. sativus, and L. culinaris are species within the genera Rhizobium and the ones associated to Medicago sp, within the genera Sinorhizobium. The results revealed also that the cadmium tolerance of the different legumes-rhizobia interaction was as follows: M. minima<M. truncatula<M. marina<L. sativus<L. culinaris indicating that the effect of Cadmium on root nodulation and biomass production is more deleterious on M. minima-S. meliloti and M. truncatula-S. meliloti than in other symbiosis. Knowledge on genetic and functional diversity of M. marina, L. sativus and L. culinaris microsymbiotes is very useful for inoculant strain selection and can be selected to develop inoculants for soil phytoremediation.  相似文献   

11.
Sixty-eight new rhizobial isolates were obtained from root-nodules of Medicago laciniata and from Mediterranean soils in Tunisia and France. All of them were identified as Sinorhizobium meliloti on the basis of PCR-RFLP analyses of 16S rDNA and the intergenic spacer sequence between 16S and 23S rDNAs. DNA/DNA hybridization, phenotypic characterization and 16S rRNA gene sequencing led to the conclusion that they belong the same taxon. All new isolates shared the ability to nodulate and fix nitrogen with M. laciniata except 11 of them not capable of fixing nitrogen with this plant and originating from French soils containing no efficiently adapted symbionts with M. laciniata. The nitrogen-fixing rhizobia on M. laciniata differed markedly from the other S. meliloti or Sinorhizobium medicae isolates and references in their symbiotic traits such as nifDK RFLP diversity, nodA sequences and nitrogen effectiveness with tree other different annual Medicago species (M. truncatula, M. polymorpha and M. sauvagei). Two infrasubspecific (biovar) divisions are therefore proposed within S. meliloti: bv. medicaginis for Sinorhizobium efficient on M. laciniata and bv. meliloti for the classically known S. meliloti group represented by the strains ATCC9930(T) and RCR 2011 efficient on M. sativa.  相似文献   

12.
It is known that the Rhizobium galegae genomes contain megaplasmids. The suicide vector pSUP2111 with nifH gene of R. meliloti was introduced into the strains CIAM 0703 and CIAM 0711 of R. galegae inducing effective nodules on Galega orientalis plants. The formation of self-transmissible megaplasmids was observed. The megaplasmid transfer into non-nodulating R. meliloti mutants resulted in partial complementation of the nodulation defect in recipient strains though only one transconjugant showed the nitrogen-fixing activity in symbiosis with alfalfa and another one in symbiosis with G. orientalis plants. Among the Agrobacterium strains harbouring R. galegae megaplasmids there were four classes of transconjugants: (1) Nod+ Fix- in symbiosis with goat's rue plants (three strains); (2) Nod+ Fix- on Medicago sativa (two strains); (3) Nod+ Fix+ on M. sativa (five strains); (4) Nod- with both plant hosts (11 strains).  相似文献   

13.
AIMS: This work analyses the diversity of rhizobia associated with some of the predominant shrubby legumes in central-western Spain. Symbiotic promiscuity and effectiveness were studied using cross-inoculation experiments with shrubby species. MATERIAL AND RESULTS: Six new bradyrhizobia strains were isolated from nodules collected from wild plants of six leguminous species, Cytisus balansae, C. multiflorus, C. scoparius, C. striatus, Genista hystrix and Retama sphaerocarpa. These isolates were genetically characterized by 16S rDNA partial sequencing and random amplification of polymorphic DNA-PCR fingerprinting. The phylogenetic analysis revealed that these isolates could represent three new Bradyrhizobium species. Shrubby legumes and bradyrhizobia displayed a high symbiotic promiscuity both for infectivity and effectiveness. Symbioses were effective in more than 70% of the associations established by four of the six plant species. CONCLUSIONS: Native woody legumes in western Spain are nodulated by Bradyrhizobium strains. The high degree of symbiotic promiscuity and effectiveness highlights the complex dynamics of these communities in wild ecosystems under a Mediterranean-type climate. Furthermore, the results from this study suggest a potential importance of inoculation for these legume species in soil-restoration projects. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study, to our knowledge, that combines both molecular analysis and pot trials to study the rhizobia-legume symbiosis for wild legumes.  相似文献   

14.
Mutch LA  Young JP 《Molecular ecology》2004,13(8):2435-2444
The symbiotic partnerships between legumes and their root-nodule bacteria (rhizobia) vary widely in their degree of specificity, but the underlying reasons are not understood. To assess the potential for host-range evolution, we have investigated microheterogeneity among the shared symbionts of a group of related legume species. Host specificity and genetic diversity were characterized for a soil population of Rhizobium leguminosarum biovar viciae (Rlv) sampled using six wild Vicia and Lathyrus species and the crop plants pea (Pisum sativum) and broad bean (Vicia faba). Genetic variation among 625 isolates was assessed by restriction fragment length polymorphism (RFLP) of loci on the chromosome (ribosomal gene spacer) and symbiosis plasmid (nodD region). Broad bean strongly favoured a particular symbiotic genotype that formed a distinct phylogenetic subgroup of Rlv nodulation genotypes but was associated with a range of chromosomal backgrounds. Host range tests of 80 isolates demonstrated that only 34% of isolates were able to nodulate V. faba. By contrast, 89% were able to nodulate all the local wild hosts tested, so high genetic diversity of the rhizobial population cannot be ascribed directly to the diversity of host species at the site. Overall the picture is of a population of symbionts that is diversified by plasmid transfer and shared fairly indiscriminately by local wild legume hosts. The crop species are less promiscuous in their interaction with symbionts than the wild legumes.  相似文献   

15.
Abstract Strains of Rhizobium sp. (Galega) (R. galegae), R. meliloti, R. leguminosarum , and R. loti were compared for their lipopolysaccharide (LPS) and whole cell protein patterns. Antigenic properties of these LPS and proteins were tested by immunoblotting with rabbit antiserum raised against R. galegae strain HAMBI 540. The LPS and protein patterns of R. galegae strains differed from those of the other rhizobia tested. By immunoblotting, a species-specific R. galegae LPS antigen and two proteins specific for R. galegae were identified. Our results support the suggestion that R. galegae strains form a distinct taxonomic group within the genus Rhizobium .  相似文献   

16.
We investigate the genetic structure and molecular selection pattern of a sympatric population of Sinorhizobium meliloti and Sinorhizobium medicae. These bacteria fix nitrogen in association with plants of the genus Medicago. A set of 116 isolates were obtained from a soil sample, from root nodules of three groups of plants representing among-species, within-species and intraline diversity in the Medicago genus. Bacteria were characterized by sequencing at seven loci evenly distributed along the genome of both Sinorhizobium species, covering the chromosome and the two megaplasmids. We first test whether the diversity of host plants influence the bacterial diversity recovered. Using the same data set, we then analyse the selective pattern at each locus. There was no relationship between the diversity of Medicago plants that were used for sampling and the diversity of their symbionts. However, we found evidence of selection within each of the two main symbiotic regions, located on the two different megaplasmids. Purifying selection or a selective sweep was found to occur in the nod genomic region, which includes genes involved in nodulation specificity, whereas balancing selection was detected in the exo region, close to genes involved in exopolysaccharide production. Such pattern likely reflects the interaction between host plants and bacterial symbionts, with a possible conflict of interest between plants and cheater bacterial genotypes. Recombination appears to occur preferentially within and among loci located on megaplasmids, rather than within the chromosome. Thus, recombination may play an important role in resolving this conflict by allowing different selection patterns at different loci.  相似文献   

17.
A high degree of genetic diversity among 125 peanut bradyrhizobial strains and among 32 peanut cultivars collected from different regions of China was revealed by using the amplified fragment length polymorphism (AFLP) technique. Eighteen different peanut bradyrhizobial genotypes and six peanut cultivars were selected for symbiotic cross-inoculation experiments. The genomic diversity was reflected in the symbiotic diversity. The peanut cultivars varied in their ability to nodulate with the strains used. Some cultivars had a more restricted host range than the others. Also the strains displayed a range of nodulation patterns. In yield formation there were clear differences between the plant cultivar/bradyrhizobium combinations. There was good compatibility between some peanut bradyrhizobial strains and selected cultivars, with inoculation resulting in well-nodulated, high-yielding symbiotic combinations, but no plant cultivar was compatible with all strains used. The strains displayed a varying degree of effectiveness, with some strains being fairly effective with all cultivars and others with selected ones. The AFLP genotypes of the strains did not explain the symbiotic behavior, whereas the yield formation of the plant cultivars was more related to the genotype. It is concluded that to obtain optimal nitrogen fixation efficiency of peanut in the field, compatible plant cultivar-bradyrhizobium combinations should be selected either by finding inoculant strains compatible with the plant cultivars used, or plant cultivars compatible with the indigenous bradyrhizobia.  相似文献   

18.
I. HUBER AND S. SELENSKA-POBELL. 1994. The genomes of several Rhizobium galegae (of.) strains, which effectively nodulate Galega officinalis host, were analysed by pulsed-field gel electrophoresis (PFGE). Individual PFGE-fingerprints were obtained for every particular strain when the rarely cutting restriction endonucleases Spe I and Asn I were applied. In hybridization experiments, where a DNA fragment carrying the rrnB ribosomal RNA operon of Escherichia coli was used as a probe, the number of the resulting strain-specific Spe I and Asn I bands was reduced to three for all of the strains studied. This suggests that in Rh. galegae (of.) there are at least three rrn loci. On the basis of the lengths of the Spe I fragments, separated by PFGE, the genome size of five Rh. galegae (of.) strains was estimated to be 5852 ± 198 kbp.  相似文献   

19.
Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.  相似文献   

20.
Total DNA of various Rhizobium galegae strains representing different geographical origins, and taxonomic divergence was digested with three restriction enzymes separately, Southern blotted, and hybridized with six heterologous probes. The sequence divergences for different pairwise comparisons were calculated from proportions of conserved hybridizing fragments. The unweighted pair group method was used to group the strains. The symbiotic common nod and nifHDK probes used were highly conserved and grouped the strains according to the host plant, Galega orientalis or G. officinalis. The grouping derived from combined data of the constitutive hemA, glnA, ntrC, and recA probes was similar to that obtained in total DNA-DNA hybridization experiments. The constitutive probes grouped the strains in a different order than did the symbiotic probes, a result that may reflect interstrain transfer of symbiotic sequences in the course of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号