首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of multicellular organisms are semi-fluid creatures. Even when they form specific cell-cell adhesions, they cannot create a defined shape or a tissue-specific architecture. Cartilaginous organs, such as ears and noses, exemplify the fact that form is imprinted in the extracellular matrix (ECM), which leads to the conclusion that cells must have the ability to shape the ECM in which they reside. This seems to be true for most tissues. The role of the ECM as an integrator of cells into functional assemblies with defined architecture is unique to multicellular organisms. The evolution of multicellularity became possible as a consequence of cells acquiring two new properties: first, cell surface macromolecular complexes that function in cell-cell binding; and, second, an ECM that integrates cells into three-dimensional structures. These two new properties allowed the evolution of the two basic types of cells-epithelial and mesenchymal. The appearance of the latter, a fibroblast-like cell with abundant filopodia, enabled the sculpturing of the ECM and the formation of complex tissue-specific architectures.  相似文献   

2.
The variability of characteristics in haploid production was assessed depending on the growth conditions for donor plants, ear pretreatment technique, and nutrient medium composition. The ranks of genotypes included in the experiment remained unchanged in terms of their in vitro ability toward androgenesis, which evidences the significant contribution of a genetic component to the general variability and demonstrates the need to investigate how genetic control of androgenesis works.  相似文献   

3.
Summary Response frequencies in maize (Zea mays L.) anthers cultured in vitro were examined in a diallel set of crosses among four commercial inbred lines. Significant differences among the genotypes were observed, with the crosses H99xFR16 and Pa91xFR16 displaying the highest responses. General (GCA) and specific (SCA) combining ability mean squares were calculated and determined to be highly significant. GCA effects among the parental lines were highest for FR16 and lowest for LH38. Nongenotypic, plant-toplant differences were also found to make a significant contribution to the overall variation observed. The results from this study indicate that parents which give rise to highly responsive hybrids can be identified and that genetic improvement is possible through selection.  相似文献   

4.
Selection for increased anther culture response in maize   总被引:1,自引:0,他引:1  
Summary Anther culture of a three-way cross, (H99 × FR16) × Pa91, resulted in the regeneration of two anther-derived plants which were crossed to produce an F1 progeny. Fourteen S1 families derived from this cross were evaluated for their anther culturability. Dramatic increases in the level of androgenesis, expressed as the percentage of cultured anthers which produced embryo-like structures, were observed. An overall mean response frequency of 23.4% was observed for the S1 families. This was compared to a 3.5% response in the original three-way cross. These results demonstrate that genetic improvement of in vitro androgenesis in maize is possible and that anther culture per se constitutes a procedure for selecting genes which favor increased levels of response.  相似文献   

5.
In angiosperm ovules and anthers, the hypodermal cell layer provides the progenitors of meiocytes. We have previously reported that the multiple archesporial cells1 (mac1) mutation identifies a gene that plays an important role in the switch of the hypodermal cells from the vegetative pathway to the meiotic (sporogenous) pathway in maize ovules. Here we report that the mac1 mutation alters the developmental fate of the hypodermal cells of the maize anther. In a normal anther a hypodermal cell divides periclinally with the inner cell giving rise to the sporogenous archesporial cells while the outer cell, together with adjacent cells, forms the primary parietal layer. The cells of the parietal layer then undergo two cycles of periclinal divisions to give rise to three wall layers. In mac1 anthers the primary parietal layer usually fails to divide periclinally so that the three wall layers do not form, while the archesporial cells divide excessively and most fail to form microsporocytes. The centrally located mutant microsporocytes are abnormal in appearance and in callose distribution and they fail to proceed through meiosis. These failures in development and function appear to reflect the failure of mac1 gene function in the hypodermal cells and their cellular progeny.  相似文献   

6.
Summary Ploidy levels of 26Zea mays L. anther culture-derived callus lines of the F1 hybrids (H99 × Pa91, Pa91 × FR16, and H99 × FR16) were determined at various times after culture initiation using flow cytometry (for 21 lines) or chromosome counting of callus cells or regenerated plants (for the remaining 5 lines). Twenty of the lines remained haploid, whereas 6 were diploid. The results from flow cytometry, after examining the DNA content of 5000 nuclei of each callus line, show that each callus line consisted of homogenous haploid or diploid cells. Thus for diploid callus lines, spontaneous chromosome doubling must have occurred before or in the early stages of androgenesis, before the initiation of callus cultures. These long-term callus cultures (growing for up to 38 mo.) have stably maintained their ploidy levels so it is unlikely that the culture conditions have caused chromosome doubling. The restriction fragment length polymorphism pattern obtained with 52 to 58 markers for each diploid callus line shows that all the diploid lines are homozygous diploid so each originated from a microspore and not from diploid maternal F1 hybrid tissue.  相似文献   

7.
The range of genetic variation of spontaneous chromosome doubling frequency of maize haploid plantlets derived from in vitro anther culture was evaluated. When regeneration is obtained by direct embryo-genesis, bypassing the callus phase, it appears that the frequency of spontaneous doubling may exceed 40 of the regenerated plantlets. This high frequency may be one consequence of the use of doubled haploid lines derived from anther culture and spontaneous chromosome doubling. We also report an increase, by more than 50, of the productivity of diploid fertile regenerated plantlets produced by colchicine supplemented medium during the cold shock pretreatment of the microspores inside the anthers. Optimization of the treatments and the anther culture procedure are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Palin R  Geitmann A 《Bio Systems》2012,109(3):397-402
The presence of a polysaccharidic cell wall distinguishes plant cells from animal cells and is responsible for fundamental mechanistic differences in organ development between the two kingdoms. Due to the presence of this wall, plant cells are unable to crawl and contract. On the other hand, plant cell size can increase by several orders of magnitude and cell shape can change from a simple polyhedron or cube to extremely intricate. This expansive cellular growth is regulated by the interaction between the cell wall and the intracellular turgor pressure. One of the principal cell wall components involved in temporal and spatial regulation of the growth process is pectin. Through biochemical changes to pectin composition and biochemical configuration, the properties of this material can be altered to trigger specific developmental processes. Here, the roles of pectin in three systems displaying rapid growth - the elongation zone of the root, the tip region of the pollen tube, and organ primordia formation at the shoot apical meristem - are reviewed.  相似文献   

9.
10.
11.
The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis.   总被引:16,自引:0,他引:16  
There is growing evidence that implicates a role for Sonic hedgehog (SHH) in morphogenesis of the craniofacial complex. Mutations in human and murine SHH cause midline patterning defects that are manifested in the head as holoprosencephaly and cyclopia. In addition, teratogens such as jervine, which inhibit the response of tissues to SHH, also produce cyclopia. Thus, the loss of SHH signaling during early stages of neural plate patterning has a profound influence of craniofacial morphogenesis. However, the severity of these defects precludes analyses of SHH function during later stages of craniofacial development. We have used an embryonic chick system to study the role of SHH during these later stages of craniofacial development. Using a combination of surgical and molecular experiments, we show here that SHH is essential for morphogenesis of the frontonasal and maxillary processes (FNP and MXPs), which give rise to the mid- and upper face. Transient loss of SHH signaling in the embryonic face inhibits growth of the primordia and results in defects analogous to hypotelorism and cleft lip/palate, characteristics of the mild forms of holoprosencephaly. In contrast, excess SHH leads to a mediolateral widening of the FNP and a widening between the eyes, a condition known as hypertelorism. In severe cases, this widening is accompanied by facial duplications. Collectively, these experiments demonstrate that SHH has multiple and profound effects on the entire spectrum of craniofacial development, and perturbations in SHH signaling are likely to underlie a number of human craniofacial anomalies.  相似文献   

12.
The objectives of our studies were to investigate the effect of cold pre-treatment duration and the effect of two different culture media (YP and N6) on maize anther culture response in two maize genotypes (A 18 and A 19) and to identify the gametic origin of the maize regenerants. Androgenic induction and callus formation was compared in anther cultures following pre-treatment applied to both media tested and with both maize genotypes. Higher plant regeneration was observed in case of YP media independently of the genotype used. The best results were achieved when 12 days (genotype A 18) or 14 days (in case of genotype A 19) cold pre-treatment at 10°C was applied. We have tested the possibility of using enzyme isoform analyses to identify the microspore origin of calli and plants derived from anther cultures. The 11 enzymes tested in our experiments were acid phosphatase, alcohol dehydrogenase, catalase, diaphorase, β-glucosidase, glutamate oxaloacetate transaminase, isocitrate dehydrogenase, malate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and phosphoglucoisomerase. Analysis of malate dehydrogenase proved the gametic origin of the calli initiated and of the DH plants regenerated from anther culture, when the coleoptile of the donor plant material showed two forms of enzyme 3/6 and the analysed calli showed only one of the two forms (3 or 6).  相似文献   

13.
14.
Summary. In order to produce doubled-haploid maize plants tolerant of oxidative stress, in vitro microspore selection was carried out in anther culture with reactive oxygen species (ROS) progenitors such as paraquat, menadione, tert-butylhydroperoxide (t-BHP), and methionine combined with riboflavin. All the ROS progenitors reduced the anther induction, the formation of microspore-derived structures, and their regeneration potential. Abnormal cell divisions and progeny cell degradation could be observed during the development of microspores treated with ROS progenitors. Menadione and t-BHP influenced the microspore developmental pathway, as menadione induced the formation of embryoids, while t-BHP increased the proportion of calli in the microspore-derived structures. As the result of in vitro selection, 15, 10, 10, and 3 fertile doubled-haploid plants were obtained in cultures treated with paraquat, t-BHP, methionine combined with riboflavin, and menadione, respectively. Correspondence and reprints: Agricultural Research Institute, Hungarian Academy of Sciences, Brunszvik utca 2, 2462 Martonvásár, Hungary.  相似文献   

15.
The data about organization of the extracellular matrix (ECM) components and their interplay in the mammalian brain are rather limited. Hyaluronate (HA) is one of the main ECM glycosaminoglycans. Its location and function in the brain are believed to be mediated through its interaction with HA-binding proteins and proteoglycans. In this report, we describe distribution of the total HA-binding activity in the cells in the course of postnatal development of the rat brain and the effect of HA on cultured neurons. A high level of the HA-binding activity was found in the newborn cerebellum, but it quickly decreased after postnatal day 1. On postnatal day 5, strong HA-binding activity was demonstrated only in apical parts of growth cones of Purkinje cells. The data showed rapid down-regulation of HA-binding activity at the first stage of cerebellum maturation (migration of granule cells and beginning of differentiation of neurons). To obtain more information concerning a key role of HA in morphogenesis of neurons, low density cell cultures of the hippocampal neurons were used. The presence of HA in the substrate led to an increase in the cell adherence. However, a part of the cells got differentiated later. These data allow us to suggest that interactions between extracellular HA and cell-surface receptors can regulate motility and differentiation of the neurons.  相似文献   

16.
17.
Angiogenesis requires the development of a hierarchically branched network of vessels, which undergoes radial expansion and anastomosis to form a close circuit. Branching is achieved by coordinated behavior of endothelial cells that organize into leading “tip” cells and trailing “stalk” cells. Such organization is under control of the Dll4-Notch signaling pathway, which sets a hierarchy in receptiveness of cells to VEGF-A. Recent studies have shed light on a control of the Notch pathway by basement membrane proteins and integrin signaling, disclosing that extracellular matrix exerts active control on vascular branching morphogenesis. We will survey in the present review how extracellular matrix is a multifaceted substrate, which behind a classical structural role hides a powerful conductor function to shape the branching pattern of vessels.  相似文献   

18.
19.
Angiogenesis requires the development of a hierarchically branched network of vessels, which undergoes radial expansion and anastomosis to form a close circuit. Branching is achieved by coordinated behavior of endothelial cells that organize into leading “tip” cells and trailing “stalk” cells. Such organization is under control of the Dll4-Notch signaling pathway, which sets a hierarchy in receptiveness of cells to VEGF-A. Recent studies have shed light on a control of the Notch pathway by basement membrane proteins and integrin signaling, disclosing that extracellular matrix exerts active control on vascular branching morphogenesis. We will survey in the present review how extracellular matrix is a multifaceted substrate, which behind a classical structural role hides a powerful conductor function to shape the branching pattern of vessels.  相似文献   

20.
Mitotic spindle morphogenesis in animal cells.   总被引:9,自引:0,他引:9  
Assembly of the mitotic spindle is an interesting example of morphogenesis at the cellular level. The temporal control of this major event involves the periodic activation of the cyclin-cdc2 kinase complex. In this review, I report recent results that have shed some light on the temporal regulation of centrosome duplication, microtubule nucleation and microtubule dynamics. Reorganization of highly dynamic microtubules into a bipolar spindle probably requires kinesin and dynein-like motors and their role is discussed in an hypothetical model that may be applicable to all mitotic spindles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号