首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the lamin A/C gene cause the rare genetic disorder Hutchinson-Gilford progeria syndrome (HGPS). The prevalent mutation results in the production of a mutant lamin A protein with an internal 50 amino acid deletion which causes a cellular aging phenotype characterized by growth defects, limited replicative lifespan, and nuclear membrane abnormalities. However, the relevance of these findings to normal human aging is unclear. In this study, we demonstrate that increased levels of wild-type lamin A in normal human cells result in decreased replicative lifespan and nuclear membrane abnormalities that lead to apoptotic cell death and senescence in a manner that is strongly reminiscent of the phenotype shown by HGPS cells. In contrast to the accelerated aging defects observed in HGPS cells, the progeroid phenotype resulting from increased expression of wild-type lamin A can be rescued by overexpression of ZMPSTE24, the metalloproteinase responsible for the removal of the farnesylated carboxyl terminal region of lamin A. Furthermore, farnesyltransferase inhibitors also serve to reverse the progeroid phenotype resulting from increased lamin A expression. Significantly, cells expressing elevated levels of lamin A display abnormal lamin A localization and similar alterations in the nuclear distribution of lamin A are also observed in cells from old-age individuals. These data demonstrate that the metabolism of wild-type lamin A is delicately poised and even in the absence of disease-linked mutations small perturbations in this system are sufficient to cause prominent nuclear defects and result in a progeroid phenotype.  相似文献   

2.
Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best characterized human progeroid syndromes. HGPS is caused by a point mutation in lamin A (LMNA) gene, resulting in the production of a truncated protein product—progerin. WS is caused by mutations in WRN gene, encoding a loss-of-function RecQ DNA helicase. Here, by gene editing we created isogenic human embryonic stem cells (ESCs) with heterozygous (G608G/+) or homozygous (G608G/G608G) LMNAmutation and biallelic WRN knockout, for modeling HGPS and WS pathogenesis, respectively. While ESCs and endothelial cells (ECs) did not present any features of premature senescence, HGPS- and WS-mesenchymal stem cells (MSCs) showed aging-associated phenotypes with different kinetics. WS-MSCs had early-onset mild premature aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitcs. Taken together, our study compares and contrasts the distinct pathologies underpinning the two premature aging disorders, and provides reliable stem-cell based models to identify new therapeutic strategies for pathological and physiological aging.  相似文献   

3.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.  相似文献   

4.
Progeroid laminopathies are accelerated aging syndromes caused by defects in nuclear envelope proteins. Accordingly, mutations in the LMNA gene and functionally related genes have been described to cause HGPS (Hutchinson-Gilford progeria syndrome), MAD (mandibuloacral dysplasia) or RD (restrictive dermopathy). Functional studies with animal and cellular models of these syndromes have facilitated the identification of the molecular alterations and regulatory pathways involved in progeria development. We have recently described a novel regulatory pathway involving miR-29 and p53 tumour suppressor which has provided valuable information on the molecular components orchestrating the response to nuclear damage stress. Furthermore, by using progeroid mice deficient in ZMPSTE24 (zinc metalloprotease STE24 homologue) involved in lamin A maturation, we have demonstrated that, besides these abnormal cellular responses to stress, dysregulation of the somatotropic axis is responsible for some of the alterations associated with progeria. Consistent with these observations, pharmacological restoration of the somatotroph axis in these mice delays the onset of their progeroid features, significantly extending their lifespan and supporting the importance of systemic alterations in progeria progression. Finally, we have very recently identified a novel progeroid syndrome with distinctive features from HGPS and MAD, which we have designated NGPS (Néstor-Guillermo progeria syndrome) (OMIM #614008). This disorder is caused by a mutation in BANF1, a gene encoding a protein with essential functions in the assembly of the nuclear envelope, further illustrating the importance of the nuclear lamina integrity for human health and providing additional support to the study of progeroid syndromes as a valuable source of information on human aging.  相似文献   

5.
衰老是一种生理完整性丧失,功能受损,疾病和死亡风险增加的过程。早老症(HGPS)是一种加速化的衰老疾病,是研究人类正常衰老理想的疾病模型。由LMNA基因突变产生prelamin AΔ50在细胞内累积是造成早老症的主要原因,早老症病人表现出寿命急剧缩短,老化特征明显的现象,例如脱发、皮下脂肪减少、骨质疏松以及早逝。 锌金属蛋白酶Zmpste24 是prelamin A加工成为成熟lamin A蛋白的关键酶。敲除Zmpste24基因的小鼠表现出与早老症高度一致的衰老表型,同时也存在非常相似的发病机制,如染色质异常、DNA损伤和干细胞功能缺失等。Zmpste24缺失小鼠作为典型的早老模型小鼠因其衰老周期短,衰老特征明显而获得广泛应用。本文总结了以Zmpste24缺失早老小鼠为模型取得的早老相关分子机制的研究进展,以及抗衰老策略的最新发现。  相似文献   

6.
The great majority of cases of the Hutchinson-Gilford progeroid syndrome (HGPS) (“Progeria of Childhood‘’) are caused by a single nucleotide mutation (1824 C->T) in the LMNA gene which encodes lamin A and C, nuclear intermediate filaments that are important components of the nuclear lamina. The resultant mutant protein (Δ50 lamin A) is thought to act in a dominant fashion. We exploited RNA interference technology to suppress Δ50 lamin A expression, with the long range goal of intervening in the pathogenesis of the coronary artery atherosclerosis that typically leads to the death of HGPS patients. Short hairpin RNA (shRNA) constructs were designed to target the mutated pre-spliced or mature LMNA mRNAs, and were expressed in HGPS fibroblasts carrying the 1824 C->T mutations using lentiviruses. One of the shRNAs targeted to the mutated mRNA reduced the expression levels of Δ50 lamin A to 26% or lower. The reduced expression was associated with amelioration of abnormal nuclear morphology, improvement of proliferative potential, and reduction in the numbers of senescent cells. These findings provide a rationale for potential gene therapy.  相似文献   

7.
Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS.  相似文献   

8.
《Biophysical journal》2022,121(4):620-628
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disease caused by a single-point mutation in the lamin A gene, resulting in a truncated and farnesylated form of lamin A. This mutant lamin A protein, known as progerin, accumulates at the periphery of the nuclear lamina, resulting in both an abnormal nuclear morphology and nuclear stiffening. Patients with HGPS experience rapid onset of atherosclerosis, with death from heart attack or stroke as teenagers. Progerin expression has been shown to cause dysfunction in both vascular smooth muscle cells and endothelial cells (ECs). In this study, we examined how progerin-expressing endothelial cells adapt to fluid shear stress, the principal mechanical force from blood flow. We compared the response to shear stress for progerin-expressing, wild-type lamin A overexpressing, and control endothelial cells to physiological levels of fluid shear stress. Additionally, we also knocked down ZMPSTE24 in endothelial cells, which results in increased farnesylation of lamin A and similar phenotypes to HGPS. Our results showed that endothelial cells either overexpressing progerin or with ZMPSTE24 knockdown were unable to adapt to shear stress, experiencing significant cell loss at a longer duration of exposure to shear stress (3 days). Endothelial cells overexpressing wild-type lamin A also exhibited similar impairments in adaptation to shear stress, including similar levels of cell loss. Quantification of nuclear morphology showed that progerin-expressing endothelial cells had similar nuclear abnormalities in both static and shear conditions. Treatment of progerin-expressing cells and ZMPSTE24 KD cells with lonafarnib and methystat, drugs previously shown to improve HGPS nuclear morphology, resulted in improvements in adaptation to shear stress. Additionally, the prealignment of cells to shear stress before progerin-expression prevented cell loss. Our results demonstrate that changes in nuclear lamins can affect the ability of endothelial cells to properly adapt to shear stress.  相似文献   

9.
编码核层蛋白A(lamin A)的LMNA基因突变导致法尼基化的核层蛋白A前体(prelamin A)不能被进一步加工成成熟的核层蛋白A,从而导致一种Hutchinson-Gilford早老症综合征(Hutchinson-Gilford progeria syndrome,HGPS)。一种更严重的早老症——限制性皮肤病(restrictive dermopathy,RD),是由于缺失核层蛋白A前体加工过程中的剪切酶ZMPSTE24引起的。ZMPSTE24的缺失阻止了法尼基化的核层蛋白A前体不能正常加工成为成熟的核层蛋白A,同时导致法尼基化的核层蛋白A前体的堆积。在HGPS和RD病人的成纤维细胞中,发现法尼基化的核层蛋白A前体都定位在核膜,从而影响细胞核膜的完整性,并导致细胞核形的异常,进而导致衰老。最近研究表明经过法尼基酰转移酶抑制剂(farnesyltransferase inhibitor,FTI)处理后的细胞的核形异常减少。同时,FTI能够改善HGPS和RD小鼠的早老症状。本文就核层蛋白A前体的法尼基化对衰老的影响有关研究进展作一综述。  相似文献   

10.

Background

Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing syndrome that affects children leading to premature death, usually from heart infarction or strokes, making this syndrome similar to normative ageing. HGPS is commonly caused by a mutation in the A-type lamin gene, LMNA (G608G). This leads to the expression of an aberrant truncated lamin A protein, progerin. Progerin cannot be processed as wild-type pre-lamin A and remains farnesylated, leading to its aberrant behavior during interphase and mitosis. Farnesyltransferase inhibitors prevent the accumulation of farnesylated progerin, producing a less toxic protein.

Results

We have found that in proliferating fibroblasts derived from HGPS patients the nuclear location of interphase chromosomes differs from control proliferating cells and mimics that of control quiescent fibroblasts, with smaller chromosomes toward the nuclear interior and larger chromosomes toward the nuclear periphery. For this study we have treated HGPS fibroblasts with farnesyltransferase inhibitors and analyzed the nuclear location of individual chromosome territories. We have found that after exposure to farnesyltransferase inhibitors mis-localized chromosome territories were restored to a nuclear position akin to chromosomes in proliferating control cells. Furthermore, not only has this treatment afforded chromosomes to be repositioned but has also restored the machinery that controls their rapid movement upon serum removal. This machinery contains nuclear myosin 1β, whose distribution is also restored after farnesyltransferase inhibitor treatment of HGPS cells.

Conclusions

This study not only progresses the understanding of genome behavior in HGPS cells but demonstrates that interphase chromosome movement requires processed lamin A.  相似文献   

11.
Mechnotransduction, the phenomenon by which cells respond to applied force, is necessary for normal cell processes and is implicated in the pathology of several diseases including atherosclerosis. The exact mechanisms which govern how forces can affect gene expression have not been determined, but putative direct force effects on the genome would require transduction through the nuclear lamina. In this study we show that nuclei in cells exposed to shear stress significantly change shape, upregulate nuclear lamins and move lamins from the nuclear interior to the nuclear periphery. We hypothesize that the augmentation of the nuclear lamina at the nuclear periphery protects the nuclear interior from the force and allows a nuclear adaptation to shear stress. We also investigate the shear stress response of nuclei in cells that have been transfected with lamin A Delta50, which significantly stiffens nuclei. Lamin A Delta50 causes the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS) and models many aspects of normal aging. We find that the presence of lamin A Delta50 in only 30% of cells greatly reduces the response of the nuclear lamina in all cells in the flow field. We suggest that cells expressing lamin A Delta50 lack the ability to adapt to flow and may prevent neighboring cells from adapting as well. These results provide insight into the development of cardiovascular disease both in patients with HGPS and in normal aging.  相似文献   

12.
Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.  相似文献   

13.
Hutchinson–Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) are two laminopathies caused by mutations leading to cellular accumulation of prelamin A or one of its truncated forms, progerin. One proposed mechanism for the more severe symptoms in patients with RD compared with HGPS is that higher levels of farnesylated lamin A are produced in RD. Here, we show evidence in support of that hypothesis. Overexpression of the most common progeroid lamin A mutation (LMNA c.1824C>T, p.G608G) during skin development results in a severe phenotype, characterized by dry scaly skin. At postnatal day 5 (PD5), progeroid animals showed a hyperplastic epidermis, disorganized sebaceous glands and an acute inflammatory dermal response, also involving the hypodermal fat layer. PD5 animals also showed an upregulation of multiple inflammatory response genes and an activated NF‐kB target pathway. Careful analysis of the interfollicular epidermis showed aberrant expression of the lamin B receptor (LBR) in the suprabasal layer. Prolonged expression of LBR, in 14.06% of the cells, likely contributes to the observed arrest of skin development, clearly evident at PD4 when the skin had developed into single‐layer epithelium in the wild‐type animals while progeroid animals still had the multilayered appearance typical for skin at PD3. Suprabasal cells expressing LBR showed altered DNA distribution, suggesting the induction of gene expression changes. Despite the formation of a functional epidermal barrier and proven functionality of the gap junctions, progeroid animals displayed a greater rate of water loss as compared with wild‐type littermates and died within the first two postnatal weeks.  相似文献   

14.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, debilitating disease with early mortality and rapid onset of aging-associated pathologies. It is linked to mutations in LMNA, which encodes A-type nuclear lamins. The most frequent HGPS-associated LMNA mutation results in a protein, termed progerin, with an internal 50 amino acid deletion and, unlike normal A-type lamins, stable farnesylation. The cellular consequences of progerin expression underlying the HGPS phenotype remain poorly understood. Here, we stably expressed lamin A mutants, including progerin, in otherwise identical primary human fibroblasts to compare the effects of different mutants on nuclear morphology and cell proliferation. We find that expression of progerin leads to inhibition of proliferation in a high percentage of cells and slightly premature senescence in the population. Expression of a stably farnesylated mutant of lamin A phenocopied the immediate proliferative defects but did not result in premature senescence. Either p53 inhibition or, more surprisingly, expression of the catalytic subunit of telomerase (hTERT) suppressed the early proliferative defects associated with progerin expression. These findings lead us to propose that progerin may interfere with telomere structure or metabolism in a manner suppressible by increased telomerase levels and possibly link mechanisms leading to progeroid phenotypes to those of cell immortalization.  相似文献   

15.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

16.
早老症(Hutchinson-Gilford Progeria Syndrome,HGPS)是一种早发而严重的过早老化性疾病.它是由于编码A/C型核纤层蛋白的LMNA基因发生点突变而引起.这个突变激活了基因11号外显子上一个隐蔽的剪接位点,产生了一种被截短了50个氨基酸的A型核纤层蛋白.然而,一个广泛分布于核膜上结构蛋白的突变,如何引起HGPS患者的早老表现,目前还不太清楚.最近研究发现,HGPS患者的细胞核结构与功能发生了各种异常,主要表现在:progerin蓄积与核变形、细胞核机械性质的改变、组蛋白修饰方式与外遗传控制的改变、基因表达调控异常、p53信号传导通路激活和基因组不稳定等方面.目前存在机械应激假说和基因表达失控假说两种假说解释HGPS的发病机制.对于HGPS患者,尚无有效的临床干预措施,但有学者提出了一些治疗策略,如应用法尼基化的抑制剂、反义寡核苷酸和RNA干扰方法.HGPS被认为是研究正常衰老机制的一个模型.对HGPS深入研究将有助于阐明A型核纤层蛋白和核膜的正常生理功能,及其在生理衰老和疾病中的作用.  相似文献   

17.
One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS), who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.  相似文献   

18.
Genomic instability in laminopathy-based premature aging   总被引:15,自引:0,他引:15  
Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24-/- mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24-/- MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.  相似文献   

19.
20.
Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号