首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
3.
4.
5.
Analysis of the slowed turnover rates of several specific mRNA species and the higher cellular levels of some of these mRNAs in Saccharomyces cerevisiae lacking 5'-->3' exoribonuclease 1 (xrn1 cells) has led to the finding that these yeast contain higher amounts of essentially full-length mRNAs that do not bind to oligo(dT)-cellulose. On the other hand, the length of mRNA poly(A) chains found after pulse-labeling of cells lacking the exoribonuclease, the cellular rate of synthesis of oligo(dT)-bound mRNA, and the initial rate of its deadenylation appeared quite similar to the same measurements in wild-type yeast cells. Examination of the 5' cap structure status of the poly(A)-deficient mRNAs by comparative analysis of the m7G content of poly(A)- and poly(A)+ RNA fractions of wild-type and xrn1 cells suggested that the xrn1 poly(A)- mRNA fraction is low in cap structure content. Further analysis of the 5' termini by measurements of the rate of 5'-->3' exoribonuclease 1 hydrolysis of specific full-length mRNA species showed that approximately 50% of the xrn1 poly(A)-deficient mRNA species lack the cap structure. Primer extension analysis of the 5' terminus of ribosomal protein 51A (RP51A) mRNA showed that about 30% of the poly(A)-deficient molecules of the xrn1 cells are slightly shorter at the 5' end. The finding of some accumulation of poly(A)-deficient mRNA species partially lacking the cap structure together with the reduction of the rate of mRNA turnover in cells lacking the enzyme suggest a possible role for 5'-->3' exoribonuclease 1 in the mRNA turnover process.  相似文献   

6.
The nature of RNA coded by the only light-strand (L-strand) open-reading frame unidentified reading frame 6 (URF6) was studied by using a variety of single- and double-strand DNA subclones derived from the 3.6-kilobase (kb) cytochrome b (cyt b)-URF5 coding region of the mouse mitochondrial genome. Northern blot experiments using single-strand-specific M13 clones indicate that both the heavy (H) and L strands of this genomic region are symmetrically transcribed and processed into poly(adenylic acid) [poly(A)] RNAs of comparable size. The 1.2- and 2.4-kb RNAs coded by the H strand, putative mRNAs for cyt b and URF5 reading frames, respectively, are derived from a common precursor of 3.6-kb RNA. The L-strand-coded 1.15-kb RNA, on the other hand, is derived from a short-lived precursor of 3.6-kb RNA by a multiple-step processing involving a 2.4-kb intermediate RNA. The S1 nuclease protection experiments using both the 3'- or 5'-end-labeled DNA probes and also affinity-purified 32P-labeled RNA probes indicate that the 1.15-kb RNA maps between the start of the URF6 reading frame (3' end) and a region 590-600 nucleotides to the 5' end of this reading frame. The 1.15-kb RNA thus contains the entire URF6 coding sequence and an about 590-nucleotide-long 3' untranslated region. The molar abundance of the three mRNAs in the steady-state mitochondrial RNA varies markedly. The 1.15-kb URF6 mRNA is only one-tenth the level of 1.2-kb cyt b mRNA, although it is nearly as abundant as the 2.4-kb URF5 mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The complete nucleotide sequence of the mRNA for the outer membrane lipoprotein from Escherichia coli has been determined. All the ribonuclease T1 and ribonuclease A fragments obtained from the mRNA were connected with DNA sequencing of restriction endonuclease fragments of the cloned lipoprotein gene. The mRNA consists of 322 nucleotides, and there are 38 and 50 nucleotides in the 5' and 3' end untranslated regions, respectively. The mRNA has several unique features: (a) Out of 50 possible codons for 15 amino acids in the prolipoprotein only 25 codons are used, and all of these appear to be read by the major isoaccepting species of tRNAs for individual amino acids. (b) In the first 64 nucleotides from the 5' end, there are no obvious secondary structures. On the other hand, between the 65th nucleotide and the 3' end, 85% of the nucleotides are involved in the formation of secondary structures, with nine stable stem-and-loop structures. (c) There are many repeating sequences including one repeat of 40 nucleotides. (d) There are a few other features which could be important for efficient translation of the mRNA.  相似文献   

8.
Molecular genetic studies have shown that determinants of chloroplast mRNA stability lie in both the 5' and 3' untranslated regions. While it is well-known that chloroplast mRNAs are unstable in the absence of certain nucleus-encoded factors, little is known of the decay mechanisms for chloroplast mRNA in wild-type cells. Here we used a poly(G)18 sequence, which impedes both 5'-->3' and 3'-->5' exoribonucleolytic RNA decay in vivo, to study the degradation pathway of petD mRNA in wild-type and mcd1 mutant chloroplasts of Chlamydomonas; the mcd1 mutant lacks a nucleus-encoded factor required for petD mRNA accumulation. Upon inserting poly(G) at positions -20, +25, +165 or +25/+165 relative to the mature petD 5' end, mRNAs accumulate with 5' ends corresponding to the poly(G) sequence, in addition to the normal RNA with its 5' end at +1. We interpret these results as evidence for continuous degradation of petD mRNA in wild-type cells by a 5'-->3' exoribonucleolytic activity. In the case of the -20 insertion, the accumulating RNA can be interpreted as a processing intermediate, suggesting that 5' end maturation may also involve this activity. When examined in the mcd1 mutant background, petD mRNAs with the poly(G) 5' ends, but not normal +1 ends, accumulated. However, no expression of SUIV, the petD gene product, was detected. Insertion of poly(G) at +165 in wild-type cells did not demonstrably affect SUIV accumulation, suggesting that ribosomal scanning does not occur upstream of this position. However, since neither poly(G) -20 nor +165 RNA could be translated in mcd1 cells, this raises the possibility that the MCD1 product is essential for translation.  相似文献   

9.
10.
H Kuge  J D Richter 《The EMBO journal》1995,14(24):6301-6310
During the early development of many animal species, the expression of new genetic information is governed by selective translation of stored maternal mRNAs. In many cases, this translational activation requires cytoplasmic poly(A) elongation. However, how this modification at the 3' end of an mRNA stimulates translation from the 5' end is unknown. Here we show that cytoplasmic polyadenylation stimulates cap ribose methylation during progesterone-induced oocyte maturation in Xenopus laevis. Translational recruitment of a chimeric reporter mRNA that is controlled by cytoplasmic polyadenylation coincides temporally with cap ribose methylation during this period. In addition, the inhibition of cap ribose methylation by S-isobutyladenosine significantly reduces translational activation of a reporter mRNA without affecting the increase of general protein synthesis or polyadenylation during maturation. These results provide evidence for a functional interaction between the termini of an mRNA molecule and suggest that 2'-O-ribose cap methylation mediates the translational recruitment of maternal mRNA.  相似文献   

11.
12.
13.
The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.  相似文献   

14.
We previously showed that the right third of HindIII fragment L (0.59 to 0.65) of herpes simplex virus type 1 (HSV-1) encodes a family of mRNAs some members of which appear to be related by splicing. In the experiments described in this communication, we determined the nucleotide sequence of the DNA encoding this mRNA family and precisely located the mRNAs associated with this DNA sequence. The major mRNA species is unspliced and encoded by a 2.520-nucleotide region. Just upstream of the 5' end are TATA and CAT box sequences characteristic of HSV-1 promoters. The 3' end maps near a region containing a nominal polyadenylation signal. Three minor species (2,400, 2,200, and 1,900 bases, respectively) appear to share a very short leader sequence with the 5' end of the major mRNA and are then encoded by uninterrupted DNA sequences beginning about 100, 400, and 625 bases downstream of the 5' end of the major unspliced mRNA. These positions map at or very near positions which agree reasonably well with consensus splice acceptor sequences. The fourth mRNA is encoded by a contiguous 730-nucleotide sequence at the 3' end of the major unspliced mRNA and has its 5' end just downstream of recognizable TATA and CAT box sequences. We suggest that this mRNA is controlled by its own promoter. The nucleotide sequence data, in combination with the mRNA localization, demonstrate four potential polypeptides encoded by the region. The largest is 1,569 bases long and defines a 523-amino acid protein with sequence features characteristic of a glycoprotein. This was confirmed to be HSV-1 glycoprotein C by immune precipitation of the in vitro translation product of the major unspliced mRNA, performed with a polyspecific antibody to HSV-1 envelope glycoproteins (anti-env-1 serum), and by comparison of tryptic peptides of this translation product with those of authentic HSV-1 glycoprotein C. Polypeptides encoded by some of the minor species also were tentatively identified.  相似文献   

15.
16.
17.
18.
19.
20.
Identification of two human beta-tubulin isotypes.   总被引:48,自引:14,他引:34       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号