首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Neogene stable isotope stratigraphy and planktonic foraminiferal biostratigraphy have been examined in a high sedimentation rate core (E67-135, Shell Oil Co.) drilled at 725 m water depth in the De Soto Canyon, Gulf of Mexico. The 305 m core contains sections that are Late Miocene, Early Pliocene, Late Pliocene, and Quaternary in age, and is rich in well-preserved assemblages of planktonic foraminifera.A biostratigraphy has been established based on the ranges of 34 selected species of foraminifera. The core 3orrelates with sections from the Gulf of Mexico, the Caribbean Sea, and the subtropical North and South Atlantic Oceans using, as datums, the evolutionary appearances of Globorotalia miocenica Palmer and Globorotalia margaritae evoluta Cita, the extinction of Globorotalia miocenica and the first appearance of Globorotalia truncatulinoides (d'Orbigny).Oxygen and carbon isotope stratigraphy is based on analysis of the benthonic foraminifer, Uvigerina d'Orbigny. Isotopic trends are similar to those observed in the Pacific and Atlantic Oceans. From Early Pliocene to Late Pleistocene time, average δ18O values increase (2.42‰ to 3.36‰) and exhibit a wider range of values (0.71‰ in Early Pliocene compared to 1.65‰ in Late Pleistocene sediments), probably reflecting Late Neogene climatic deterioration. The ratio 13C12C decreases significantly by ?0.21‰ from the Late Miocene to the Early Pliocene. A decrease in δ13C is observed in other cores and is probably related to changing oceanic circulation patterns in Late Miocene time.  相似文献   

2.
Population genetics has gained popularity as a method to discover glacial refugia in terrestrial species, but has only recently been applied to the marine realm. The last glacial maxima occurred 20,000 years ago, decreasing sea levels by 120 m and exposing much of the continental shelf in the northern Gulf of Mexico, with the exception of De Soto Canyon (2100 m depth). The goal of this study was to determine whether population dynamics of the giant deep-sea isopod, Bathynomus giganteus, were better explained by habitat diversity or by the past presence of a marine glacial refugium in De Soto Canyon. To accomplish this we (1) measured genetic diversity in De Soto Canyon and adjacent regions, (2) characterized gene flow and connectivity between these regions, and (3) investigated historical changes to population size. We sequenced three mitochondrial loci (12S, 16S, and COI) from 212 individuals and also performed a next-generation sequencing pilot study using double digest Restriction site-Associated DNA sequencing. We found high genetic diversity and connectivity throughout the study regions, migration between all three regions, low population differentiation, and evidence of population expansion. This study suggests that habitat heterogeneity, rather than the presence of a glacial refugium, has had an historical effect on the population dynamics of B. giganteus.  相似文献   

3.
Schroeder  W. W. 《Hydrobiologia》2002,471(1-3):29-33
Authigenic carbonate, precipitated in conjunction with biogeochemical activity associated with hydrocarbon and related fluid seepage, provides exposed and buried hard substrate on the crest and flanks of a low-relief mound located on the upper De Soto Slope in the northeastern Gulf of Mexico. Lophelia pertusa has successfully colonized some of this carbonate material. Individual colonies range in size from a few centimeters to over 1.5 m in diameter while aggregations of closely associated colonies with linear orientations were observed to attain 1.5–2 m in height and width and 3–4 m in length. Many of the aggregated colonies appear to be in the first phase of the `thicket' building stage described by Squires (1964). Colonies less than 50–75 cm in diameter were nearly always completely pure white. Larger colonies and the aggregated colonies are often light to dark brown in coloration at their base and center with many having only white terminal branches and some with no white corallum at all.  相似文献   

4.
We implemented a temporally dynamic approach to the cladistic biogeographic analysis of 13 areas of North American deserts and several plant and animal taxa. We undertook a parsimony analysis of paralogy‐free subtrees based on 43 phylogenetic hypotheses of arthropod, vertebrate and plant taxa, assigning their nodes to three different time slices based on their estimated minimum ages: Early‐Mid‐Miocene (23?7 Ma), Late Miocene/Pliocene (6.9?2.5 Ma) and Pleistocene (2.4?0.011 Ma). The analyses resulted in three general area cladograms, one for each time slice, showing different area relationships. They allowed us to detect influences of different geological and palaeoclimatological events of the Early‐Mid‐Miocene, Late Miocene/Pliocene and Pleistocene that might have affected the diversification of the desert biota. Several diversification events in the deserts of North America might have been driven by Neogene uplift, marine incursion and the opening of the California Gulf during the Miocene–Pliocene, whereas climatic fluctuations had the highest impact during the Pleistocene.  相似文献   

5.
《Marine Micropaleontology》1988,13(3):193-212
Foraminifera and diatoms have been analyzed from an upper Miocene through Pleistocene(?) sequence of marine sediments exposed on Maria Madre Island, largest of the Trés Marias Islands off the Pacific coast of Mexico. The Neogene stratigraphic sequence exposed on Maria Madre Island includes a mid-Miocene(?) non-marine and/or shallow marine sandstone unconformably overlain by a lower upper Miocene to uppermost Miocene upper to middle bathyal laminated and massive diatomite, mudstone, and siltstone unit. This unit is unconformably overlain by lower Pliocene middle to lower bathyal sandstones and siltstones which, in turn, are unconformably overlain by upper Pliocene through Pleistocene(?) upper bathyal to upper middle bathyal foraminiferal limestones and siltstones. These beds are unconformably capped by Pleistocene terrace deposits. Basement rocks on the island include Cretaceous granite and granodiorite, and Tertiary(?) andesites and rhyolites. The upper Miocene diatomaceous unit contains a low diversity foraminiferal fauna dominated by species of Bolivina indicating low oxygen conditions in the proto-Gulf Maria Madre basin. The diatomaceous unit grades into a mudstone that contains a latest Miocene upper to middle bathyal biofacies characterized by Baggina californica and Uvigerina hootsi along with displaced neritic taxa. An angular unconformity separates the upper Miocene middle bathyal sediments from overlying lower Pliocene siltstones and mudstones that contain a middle to lower bathyal biofacies and abundant planktonic species including Neogloboquadrina acostaensis and Pulleniatina primalis indicating an early Pliocene age. Significantly, this Pliocene unit contains common occurrences of benthic species restricted to Miocene sediments in California including Bulimina uvigerinaformis. Pliocene to Pleistocene(?) foraminiferal limestones and siltstones characterize submarine bank accumulations formed during uplift of the Trés Marias Island area, and include abundant planktonic foraminifera such as Pulleniatina obliquiloculata and Neogloboquadrina duterteri. Common benthic foraminifera in this unit are indicative of upper bathyal water depths. The Neogene depositional history recorded on Maria Madre Island involves an early late Miocene subsidence event marking formation of the Trés Marias Basin with relatively undiluted diatomaceous sediment deposited in a low oxygen setting. Subsidence and deepening of the basin continued into the early Pliocene along with rapid deposition of terrigenous clastics. Uplift of the basinal sequence began in late Pliocene time accompanied by deposition of upper Pliocene-Pleistocene foraminiferal limestones on a rising submarine bank. Continued episodic uplift of the Neogene deposits brought the island above sea level by late Pleistocene time.  相似文献   

6.
Abstract.— The Pleistocene Epoch has been frequently cited as a period of intense speciation for a significant portion of temperate continental biotas. To critically assess the role of Pleistocene glaciations on the evolution of the freshwater fish clade Micropterus , we use a phylogenetic analysis of complete gene sequences from two mitochondrial genes (cytochrome b and ND2), and a fossil calibration of the molecular clock to estimate ages of speciation events and rates of diversification. The absence of substantial morphological and ecological divergence together with endemism of five of the eight species in North American tributaries of the Gulf of Mexico may be interpreted as the result of a recent Pleistocene origin for these species. Speciation dates in Micropterus range from 1.01 ± 0.32 to 11.17 ± 1.02 million years ago. Only one speciation event is dated to the Pleistocene, and rates of diversification are not significantly variable in Micropterus. The premise that the Pleistocene was an exceptional period of speciation in Micropterus is not supported. Instead, a Gulf Coast allopatric speciation model is proposed, and predicts periods of dynamic speciation driven by sea level fluctuations in the Late Miocene and Pliocene. The Pleistocene, however, was a period of significant intraspecific mitochondrial lineage diversification. The application of the Gulf Coast allopatric speciation model to the remaining aquatic fauna of the Gulf of Mexico coast in North America will rely on robust phylogenetic hypotheses and accurate age estimations of speciation events.  相似文献   

7.
Summary The Miocene and Pliocene of three ODP Leg 133 sites (812, 813, 814) record the biofacies evolution prior and during the partial drowning of the Queensland Plateau carbonate platform. Four major skeletal assemblages occur in the succession. The first, middle Miocene assemblage consists of a tropical chlorozoan association. The second assemblage, which records warm-temperate depositional conditions, lacks aragonitic skeletal elements. It is dominated by foraminifera and bryozoans. The third skeletal association (uppermost Lower Pliocene) contains green algae, foraminifera, and bryozoans. The last skeletal association is pelagic (ooze) and mainly consists of planktonic foraminifera and calcareous nannoplankton. The middle Miocene depositional geometry in the analysed transect of drill sites is that of a carbonate bank with a well-defined rim and a flank. During the late Miocene and early Pliocene carbonate ramps formed. Upper Miocene and lower Pliocene deposits in the drill holes are rich in large benthic foraminifera. Combination of micropaleontological with seismic data allows the reconstruction of a curve of relative sea level for the Tortonian and Messinian. The long term trend of relative sea level is characterised by a rise punctuated by four short term falls.Lepidocyclina (Nephrolepidina) rutteni is described from the Australian faunal province for the first time.  相似文献   

8.
The time of origin of cool-to-cold-temperate plants of northern affinities in the Latin American biota is unsettled. Two models have been proposed-a Paleogene origin from a once widespread temperate rain forest, and a Neogene origin by introductions from the north which is best supported by new evidence. Fourteen palynofloras of Tertiary age are now available from Mexico and Central America, in addition to numerous others from the southeastern United States and northern South America. Pollen of cool-temperate plants occurs in the Eocene of southeastern United States, but not in northern Mexico, central Panama, or northern South America. In the Miocene this pollen is sparse in deposits from Mexico and Guatemala, rare in Panama, and absent from northern South America. In the Pliocene pollen representing a diverse northern temperate element of ten genera is present in the Pliocene of southeastern Veracruz, Mexico, five in northeastern Guatemala, and two (Myrica, Salix) first appear in northern South America; Alnus and Quercus are added in the Pleistocene. This north-to-south and early-to-late pattern is consistent with the appearance of highlands in southern Central America and northern South America in the Neogene, closure of the isthmian marine portal between 3.5 and 2.5 Ma (million years ago), and the late Cenozoic cooling trend evident in the O/O-based paleotemperature curve.  相似文献   

9.
郑卓   《广西植物》1989,9(1):13-20
从距今2500万年的中新世初到更新世,欧洲地中海沿岸地区的植被是从东亚型的热带——亚热带常绿阔叶林逐渐过渡为旱生性的蒿——藜草原。古热带和亚洲、北美成份从晚中新世起逐渐消失,少数一直延续到中更新世。孢粉分析表明,地中海成分从中上新世起有明显增加,地中海常绿硬叶林的发展与北极冰盖的形成密切相关。  相似文献   

10.
Late Pliocene and Pleistocene climatic instability has been invoked to explain the buildup of Neotropical biodiversity, although other theories date Neotropical diversification to earlier periods. If these climatic fluctuations drove Neotropical diversification, then a large proportion of species should date to this period and faunas should exhibit accelerated rates of speciation. However, the unique role of recent climatic fluctuations in promoting diversification could be rejected if late Pliocene and Pleistocene rates declined. To test these temporal predictions, dateable molecular phylogenies for 27 avian taxa were used to contrast the timing and rates of diversification in lowland and highland Neotropical faunas. Trends in diversification rates were analyzed in two ways. First, rates within taxa were analyzed for increasing or decreasing speciation rates through time. There was a significant trend within lowland taxa towards decreasing speciation rates, but no significant trend was observed within most highland taxa. Second, fauna wide diversification rates through time were estimated during one-million-year intervals by combining rates across taxa. In the lowlands, rates were highest during the late Miocene and then decreased towards the present. The decline in rates observed both within taxa and for the fauna as a whole probably resulted from density dependent cladogenesis. In the highlands, faunawide rates did not vary greatly before the Pleistocene but did increase significantly during the last one million years of the Pleistocene following the onset of severe glacial cycles in the Andes. These contrasting patterns of species accumulation suggest that lowland and highland regions were affected differently by recent climatic fluctuations. Evidently, habitat alterations associated with global climate change were not enough to promote an increase in the rate of diversification in lowland faunas. In contrast, direct fragmentation of habitats by glaciers and severe altitudinal migration of montane vegetation zones during climatic cycles may have resulted in the late Pleistocene increase in highland diversification rates. This increase resulted in a fauna with one third of its species dating to the last one million years.  相似文献   

11.
The Late Miocene—Early Pliocene paleoclimatic history has been evaluated for a deep drilled sediment sequence at Deep Sea Drilling Project Site 281 and a shallow water marine sediment sequence at Blind River, New ealand, both of which lay within the Subantarctic water mass during the Late Miocene.A major, faunally determined, cooling event within the latest Miocene at Site 281 and Blind River coincides with oxygen isotopic changes in benthonic foraminiferal composition at DSDP Site 284 considered by Shackleton and Kennett (1975) to indicate a significant increase in Antarctic ice sheet volume. However, at Site 281 benthonic foraminiferal oxygen isotopic changes do not record such a large increase in Antarctic ice volume. It is possible that the critical interval is within an unsampled section (no recovery) in the latest Miocene.Two benthonic oxygen isotopic events in the Late Miocene (0.5‰ and 1‰ in the light direction) may be useful as time-stratigraphic markers. A permanent, negative, carbon isotopic shift at both Site 281 and Blind River allows precise correlations to be made between the two sections and to other sites in the Pacific region. Close interval sampling below the carbon shift at Site 281 revealed dramatic fluctuations in surface-water temperatures prior to a latest Miocene interval of refrigeration (Kapitean) and a strong pulse of dissolution between 6.6 and 6.2 ± 0.1 m.y. which may be related to a fundamental geochemical change in the oceans at the time of the carbon shift (6.3?6.2 m.y.). No similar close interval sampling at Blind River was possible because of a lack of outcrop over the critical interval.Paleoclimatic histories from the two sections are very similar. Surface water temperatures and Antarctic ice-cap volume appear to have been relatively stable during the late Middle—early Late Miocene (early—late Tongaporutuan). By 6.4 m.y. cooler conditions prevailed at Site 281. Between 6.3 and 6.2 ± 0.1 m.y. the carbon isotopic shift occurred followed, within 100,000 yr, by a distinct shallowing of water depths at Blind River. The earliest Pliocene (Opoitian) is marked by increasing surface-water temperatures.  相似文献   

12.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

13.
Summary The Seroe Domi Formation is a 350 m-thick sequence of Neogene marine limestones and silicilastic sandstones cropping out on the leeward coast of Cura?ao, Netherlands Antilles. Integrated analyses of lithofacies, biostratigraphy, geochemistry and Sr isotope model age analyses indicate that Seroe Domi Formation has experienced three major episodes of limestone diagenesis and dolomitization (Dolomites I, I′, and II) that have taken place after successive Mio-Plio-Pleistocene depositional and subaerial exposure events (Subunits 1, 2, and 3). Subunit 1, the lowermost 30 to 100 m of the Seroe Domi Formation, is composed of interbedded coralgal grainstone gravity flows, pelagic wackestones, and allochthonous blocks deposited in Middle Miocene deep-water (>500 m) fore-reef and carbonate slope environments. Subunit 2, the uppermost 250 m of the Seroe Domi Formation, consists of coralgal packstones with basement-derived siliciclastic sands that were deposted in shallowing fore-reef to reef-front environments during the Late Miocene to Pliocene. Subunit 3 siliciclastic sandstones were deposited during the Early Pleistocene within erosional cavities in the Subunit 2 limestones, and are overlain by Late Pleistocene Quaternary Limestone Terraces. The petrography, distribution and geochemistry of Dolomites I, I′ and II indicate that they were precipitated from seawater-freshwater mixing zone fluid environments. Dolomite rhombs and meteoric calcite cements within biomolds illustrate that the host Seroe Domi Formation limestones were subaerially exposed prior to each dolomitization event. Dolomite I (δ18O = +1.04 to +2.46% PDB; δ13C = −2.55 to −6.79 PDB;87Sr/86Sr=0.708866 to 0.708915; Zn=0 ppm; Cu=0 ppm) was precipitated from mixtures of seawater with isotopically-depleted freshwater during the late Middle Miocene. Dolomite I′ (δ18O = +2.08 to +3.55 PDB, δ13C = −1.53 to 1.69 PDB,87Sr/86Sr=0.708981−0.709030; Zn=0 ppm; Cu=0 ppm) was also precipitated from mixtures of seawater with isotopically-depleted freshwater, but during late Late Miocene. In contrast, Dolomite II (δ18O = +2.69 to +3.51 PDB; δ13C = −0.34 to +1.53 PDB;87Sr/86Sr=0.708954 to 0.709088; Zn=20 ppm; Cu=20 ppm) precipitated from late Early Pliocene mixtures of seawater with isotopically-depleted freshwater that had derived Zn, Cu, and less-radiogenic Sr from basalts comprising the Cura?ao basement.  相似文献   

14.
Recognition of North Pacific paleoceanographic events in the marginal Humboldt (Eel River) basin of northern California enables correlation of stratigraphic sections and development of a chronostratigraphy. Paleoclimatically related coiling shifts in Neogloboquadrina pachyderma (Ehrenberg) and benthic foraminiferal datums form the basis of the chronostratigraphy. Benthic foraminiferal datums are defined by the occurrence of selected benthic species and abundance maxima of benthic biofacies. The compiled chronostratigraphy is used to refine reconstructions of the depositional history of Humboldt basin. Paleoceanographic events, recognized by the distribution of benthic foraminiferal biofacies, are used to infer paleoceanographic history along the northeastern Pacific margin.

The similarity in coiling curves of N. pachyderma from the marine sequence at DSDP Site 173 and the coastal Centerville Beach section of Humboldt basin and at other independently dated sites along the northeastern Pacific margin demonstrates that matching records of climatic oscillations is a reliable method of correlating marine sequences. Benthic fauna from the Centerville Beach section vary in phase with climatically related coiling shifts in N. pachyderma. In particular these data show an increase in displaced neritic fauna during inferred warm intervals and resurgence of deeper bathyal fauna during inferred cool events. Similar data are observed from the inland Eel River section, demonstrating that benthic foraminiferal trends recognized at Centerville Beach can be identified elsewhere in Humboldt basin. This in-phase benthic response to climatic fluctuations probably results from changes in vertical depth range of many benthic species in response to paleoclimatically related vertical changes in water-mass position.

Depositional histories reconstructed for two key sites in southern Humboldt basin indicate low rates of sediment accumulation during early basin filling with hemipelagic sediments. Initiation of turbidite sedimentation in the early Pliocene resulted in a sharp increase in rate of sediment accumulation. This increase in rate of sediment accumulation is partially a response to tectonic uplift in the northern Coast Ranges and may be an effect of realignment of motion between the Pacific and North American plates at about this time. The inland site shoaled more rapidly during turbidite sedimentation as a result of a higher rate of sediment accumulation. The rate of sediment accumulation increased again at this site in the late Pliocene during deposition of shelf and nearshore facies. The Eel River region subsided concurrent with deposition of these shallow-water deposits.  相似文献   


15.
A high-resolution record of radiolarian faunal abundances from the eastern equatorial Pacific is compared to records of carbonate and noncarbonate burial to examine the evolution of eastern tropical Pacific climate processes during the Pliocene. These data provide a means to evaluate the sensitivity of the equatorial Pacific to the onset of Northern Hemisphere glaciation around 2.8−2.5 Ma, to the closure of the Isthmus of Panama around 4.4−3.2 Ma, and to orogeny-related weathering changes before 4.0 Ma. Radiolarian faunal assemblages and sea surface temperature (SST) estimates indicate a gradual cooling from early to late Pliocene, but no significant changes occur near the onset of northern hemisphere glaciation. Records of carbonate and noncarbonate mass accumulation show a long term decrease from the Miocene/Pliocene boundary to the upper Pliocene. Greater carbonate burial in the early Pliocene relative to the late Pliocene parallels a gradual cooling from early to late Pliocene, and may reflect changes related to Isthmus closure or widespread orogeny. No significant time domain changes are seen in the eastern equatorial Pacific that could be related to the onset of Northern Hemisphere glaciation.Evolutive spectral analyses of these equatorial Pacific climate parameters indicate that variance in SST and seasonality commonly concentrate at frequencies not linearly related to orbital variations. Furthermore, cross spectral comparisons with a high resolution benthic δ18O record indicate that the surface ocean and carbonate flux share little coherent variance with high latitude climate processes during the Pliocene. Given the high degree of chronostratigraphic control in these records, these results suggest that Milankovitch-band surface ocean processes as well as carbonate burial in the equatorial Pacific are decoupled from high latitude climate processes during the Pliocene.  相似文献   

16.
A Pliocene benthic foraminiferal fauna containing a previously unknown species association was found in the basal section of a piston core collected from the crest of Northwind Ridge (NWR) in the central Arctic Ocean. The fauna is dominated by Epistominella exigua, Cassidulina reniforme, Eponides tumidulus, Cibicides scaldisiensis, Lagena spp., Cassidulina teretis, Eponides weddellensis, Bolivina arctica, and Patellina corrugata. The presence of Cibicides scaldisiensis in the assemblage and the occurrence of Cibicides grossus higher in the core are indicative of an early Pliocene age. The morphologically distinctive species Cibicidoides sp. 795 of McNeil (in press) which occurs in the NWR core sample was previously known only from Oligocene through Miocene deposits in the Beaufort-Mackenzie Basin of Arctic Canada. Ehrenbergina sp. A and Cibicidoides aff. C. sp. 795, also present in the core, are new and endemic to the Arctic late Miocene and early Pliocene. These species, and possibly others, are survivors of the late Miocene (Messinian) sea-level crisis, which caused a significant faunal turnover in the Arctic Ocean. The predominantly calcareous assemblage indicates deposition above the calcium carbonate compensation depth in an upper bathyal environment. Paleogeographic affinities for the bulk of the assemblage indicate probable connections between the Arctic and the North Atlantic Oceans, but the endemic species identify environmental differences or partial isolation of the western Arctic Ocean. The species association suggests a cold but milder paleoclimate than that which existed during Pleistocene glacial intervals.  相似文献   

17.
Tectonic extension of the Afar amounts to 10–30 km since 1–2 Ma and to 40–60 km since 3–5 Ma ago, or rougly 1–2 cm per year. Active faulting, volcanism, and development of the Pliocene and younger Afar grabens with their rich hominid and other vertebratefaunas, have been controlled by ENE and WNW oriented lineaments or ancient zones of structural weakness. These lineaments also controlled the alignment of the Gulf of Aden and Red Sea, respectively.Crustal stresses resulting from the late Miocene (Messinian) salinity crisis in the Mediterranean basin may have triggered renewed tectonic movements along certain pre-existing lineaments such as the Levant Shear. Separation of Africa from Arabia (and hence the inception of Afar) was controlled by tectonic events far removed from NE Africa, including possible Miocene fusion of the Indo-Arabian plates.During the early Pliocene, the Ethiopian uplands were far lower (possibly by 1000 m) and the southern Afar-Middle Awash region was higher, so that topographic and climatic contrasts between plain and plateau were less pronounced and the Afar climate was less arid than today.There was a major change from lacustrine to fluviatile deposition in the Middle Awash valley soon after 4·0–3·8 Ma ago, caused by extensional tectonics. Within the topographic constraints imposed by volcano-tectonic activity, regional climatic oscillations have controlled the detailed pattern of Pliocene (and later) sedimentation in Afar.  相似文献   

18.
Molecular studies of population divergence and speciation across the Oriental Region are sparse, despite the region’s high biodiversity and extensive Pliocene and Pleistocene environmental change. A molecular phylogenetic study of the Neocellia Series of Anopheles mosquitoes was undertaken to identify patterns of diversification across the Oriental Region and to infer the role of Pleistocene and Pliocene climatic change. A robust phylogeny was constructed using CO2 and ND5 mitochondrial genes and ITS2 and D3 nuclear ribosomal markers. Bayesian analysis of mitochondrial genes was used to date divergence events. The repeated contraction and expansion of forest habitat resulting from Pleistocene climatic fluctuations appears to have had a substantial impact on intraspecific diversification, but has not driven speciation within this group. Primarily early to mid Pliocene speciation was detected within the Annularis Group, whereas speciation within the Maculatus and Jamesii Groups occurred during the mid and late Pliocene. Both allopatric divergence driven by late Pliocene environmental changes and ecological adaptation, involving altitudinal replacement and seasonality, are likely to have influenced speciation in the Maculatus Group.  相似文献   

19.
Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in North and Central America. Here, we evaluate the influence of the Neogene and Quaternary geological events, as well as the climatic changes in the diversification of the colubrid snake genus Rhadinaea using molecular dating and ancestral area reconstruction. A multilocus sequence dataset was generated for 37 individuals of Rhadinaea from most of the biogeographical provinces where the genus is distributed, representing 19 of the 21 currently recognized species, and two undescribed species. Our analyses show that the majority of the Rhadinaea species nest in two main clades, herein identified as “Eastern” and “Southern”. These clades probably diverged from each other in the early Miocene, and their divergence was followed by 11 divergences during the middle to late Miocene, three divergences during the Pliocene, and six divergences in the Pleistocene. The ancestral distribution of Rhadinaea was reconstructed across the Sierra Madre del Sur. Our phylogenetic analyses do not support the monophyly of Rhadinaea. The Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have triggered the diversification of the genus, while the climatic changes during the Miocene probably induced the diversification of Rhadinaea in the Sierra Madre del Sur. Our analysis suggests that the uplifting of the Trans‐Mexican Volcanic Belt and Chiapan–Guatemalan highlands in this same period resulted in northward and southward colonization events. This was followed by more recent, independent colonization events in the Pliocene and Pleistocene involving the Balsas Basin, Chihuahuan Desert, Pacific Coast, Sierra Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Trans‐Mexican Volcanic Belt, and Veracruz provinces, probably driven by the climatic fluctuations of the time.  相似文献   

20.
The origin of the Old World brevirostrine gomphotheriid taxon Sinomastodon has been debated intensively. The discovery of the oldest known Sinomastodon cranium, reported herein, supports its endemic origin and contradicts the prevalent theory of its North America origin. The new cranium was discovered from the Shuitangba locality, southwestern China, and is dated at about 6.5–6.0 Ma, corresponding to the latest Miocene. The new specimen shows distinct characters from the other species of Sinomastodon and was therefore named Sinomastodon praeintermedius, sp. nov. Newly discovered, isolated Sinomastodon-like teeth from the upper Miocene to the lower Pleistocene of southwestern China and Southeast Asia indicate a long evolution of Sinomastodon endemically. Remains of this species are frequently accompanied by those of stegodontid species. These two groups may have had a similar migration route, invading northern China and Japan during the latest Miocene, and retreating or becoming extinct from the Palearctic realm by the end of the Pliocene. The migrations of proboscideans may have been sparked by major paleoenviromental changes, i.e., the strengthened summer monsoon beginning in the late Miocene (~7–8 Ma) and global cooling due to the expansion of ice sheets from the middle Pliocene to the early Pleistocene. The new finding reveals a close relationship of the early Pliocene fauna of northern China and the latest Miocene fauna of southwestern China, and thus provides novel insight into the origin and components of Pliocene fauna in northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号