首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some grain processing by-products rich in digestible fiber are good feed resources for ruminants. This experiment was conducted to investigate the effects of replacing a portion of corn and corn stover with the combinations of corn bran and soybean hulls in the diet of fattening lambs on nutrient digestion, rumen microbial protein synthesis, and growth performance. A total of 36 Dorper × Small Thin-Tailed crossbred ram lambs (BW = 22.2 ± 0.92 kg; mean ± SD) were randomly divided into three groups, and each group was fed 1 of 3 treatment diets: 1) 0% corn bran and soybean hulls (control); 2) 9% corn bran and 9% soybean hulls (18MIX); and 3) 17% corn bran and 17% soybean hulls (34MIX). The feeding experiment was conducted for 70 days, with the first 10 days for adaption. The DM intake was higher for 34MIX (1635.3 g/d) than for control diet (1434.7 g/d; P = 0.001). Lambs fed 18MIX and 34MIX diets (230.2 and 263.6 g/d, respectively) had higher average daily gain and feed efficiency than those fed control diet (194.8 g/d; P < 0.01). Dry matter and NDF digestibility for 34MIX group (60.9 and 49.5%) were higher than for control (55.2 and 41.3%; P < 0.01). No difference was observed in nitrogen digestibility among treatment diets (P = 0.778). The lambs fed 34MIX diet excreted more urinary purine derivatives, indicating that more microbial protein was yielded than those fed control diet (P < 0.01), while 18MIX was not different from the other two diets (P > 0.05). The metabolizable protein supplies were improved with increasing co-products inclusion rate. The results indicated that corn bran and soybean hulls in combination can effectively replace a portion of corn and corn stover in the ration of finishing lambs with positive effect on nutrient digestion and growth performance.  相似文献   

2.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

3.
The effects of varying the grain (G) to straw (S) ratio (G:S) of whole-crop wheat and barley silages on intake and digestibility and whole-crop barley silage on rumen fermentation characteristics were examined in two parallel studies. For the intake and digestibility study, eight Aberdeen Angus cross-bred steers (mean bodyweight 407 kg (S.D. 24.2)) were used in two (barley and wheat) 4 × 4 Latin Square designed experiments. The dietary treatments were four G:S ratios: 0:100, 30:70, 60:40 and 90:10. Intake of grain linearly increased (P<0.001) while that of straw decreased (P<0.001) as the ratio of G:S increased for both cereals. No effect (P>0.05) was observed in total dry matter (DM) intake (DMI) or in DMI per kg liveweight. There was a positive linear (P<0.001) effect on the digestibility of the DM and organic matter (OM) and a negative linear effect on neutral detergent fibre (aNDFom) digestibility (P<0.01) as the G:S ratio increased for both cereals. Both a positive linear (P<0.05) and quadratic (P<0.01) effect were observed for the G:S ratio on nitrogen (N) digestibility of barley and a corresponding positive linear increase (P<0.01) for wheat. A negative linear effect was found for digestibility of starch (P<0.01) and a positive linear effect for faecal grain content (P<0.01) with increasing G:S ratio. Four Holstein–Friesian steers (mean bodyweight 659 kg (S.D. 56.9)) fitted with rumen cannulae were used in the rumen study. A negative linear effect of G:S ratio was found on rumen pH (P<0.001) while a positive linear effect was found on rumen ammonia (P<0.001) and total volatile fatty acid (VFA) concentration (P<0.01) with increasing G:S ratio. A negative linear effect (P<0.01) was found on the molar proportion of acetic acid. However, this decrease was offset by linear increases in the molar proportions of iso- and n-butyric acid, iso- (P<0.01) and n- (P<0.05) valeric acid, and to a lesser extent in propionic acid (P<0.01). No effect of treatment was found on rumen pool sizes of DM or its constituents. A positive linear effect (P<0.01) was found on the effective degradability (ED) of the DM, OM, N and starch while it was found to be negative in aNDFom (P<0.05). No effect (P>0.05) was found on the fractional clearance rates of DM, OM, aNDFom or starch or on liquid passage rate. It is concluded that increasing the G:S ratio in whole-crop wheat or barley silage linearly increased the intake of digestible nutrients for both wheat and barley and increasing the G:S ratio for whole-crop barley increased the concentration of fermentation products (total VFA, ammonia and the molar proportions of the VFAs, except acetic acid) in the rumen.  相似文献   

4.
Oven drying of maize cobs treated with 5 kg NaOH/100 kg dry matter (DM) did not influence digestibility but improved voluntary feed intake. The incorporation of nitrogen in the form of urea at 0, 0.5, 1.0 and 1.5% in the diets was useful in improving the digestibility of DM, organic matter (OM) and cell wall constituents (CWC). The response was linear. In one experiment, sugarcane molasses at 20% of a diet based on NaOH-treated maize cobs was completely replaced by cassava flour, maize meal or maize bran, and these had a detrimental effect both on voluntary feed intake and digestibility. The knowledge gained in the series of experiments was used in formulating complete diets for a 63-day experiment involving 9–15-month-old growing dairy heifers. Six animals per group were assigned to control or NaOH-treated cobs diets, the mean growth rate was significantly (P < 0.01) improved from 0.412 to 0.585 kg per day and the DM consumed per unit gain was reduced from 13.0 to 11.5 kg by NaOH treatment.  相似文献   

5.
This study measured the effects of replacing corn silage and vetch hay by soy hulls in total mixed rations (TMRs) fed to 25 pairs of cows through 90 d in milk, on dry matter (DM) intake, in vivo digestibility, milk yield and composition, onset of normal estrous activity, body condition score (BCS), health and the energy balance of lactating cows. The partitioning of metabolizable energy (ME) intake between heat production (HP) and retained energy (RE) in milk and body change of each cow was measured. The two TMRs differed in the content of forage and forage aNDFom [235 g/kg versus 350 g/kg; and 128 g/kg versus 187 g/kg DM, in the experimental (EXP) and control (CON) diets, respectively]. This was reflected by an increase in voluntary DM intake by 7.2% (P=0.02) in the EXP group as compared with the CON. In vivo DM and aNDFom digestibility were 4.9% (P=0.03) and 22.7% higher (P=0.01), respectively, in the EXP group than in the CON. The higher DM intake and digestibility of the EXP TMR were reflected by a concomitant increase of 7.4% in milk yield and 10.8% in RE (P=0.01) of the EXP cows as compared with the CON. The two dietary groups expressed similar somatic cell counts, and metabolic disorders (i.e., ketosis and/or lameness), as well as pedometer activity (steps/h) suggesting similar udder health, behavior and animal welfare. A trend to an earlier return to normal ovarian activity occurred in the EXP cows as reflected by fewer days to 1st ovulation and advanced outset of estrous cycle. Despite the higher RE of the EXP cows, the HP of both groups was maintained at an upper level of 141–136 MJ/cow/d during the 90 d of the experiment.  相似文献   

6.
Feed form is well recognized to improve broiler performance, specially by increasing feed intake (FI). However, when different diet energy levels are used, the results differ in the literature. Therefore, this experiment was conducted to evaluate the influence of feed form and dietary metabolizable energy (ME) levels on broiler performance, carcass yield and on the digestibility of DM, CP, starch and gross energy. In total, 1152 male Cobb 500 broilers were evaluated between 35 and 47 days. The birds were distributed according to a completely randomized design in a 2 × 4 factorial arrangement, consisting of two feed forms (mash or pellet) and four ME levels (12.73, 13.06, 13.40 or 13.73 MJ/kg), totaling eight treatments with eight replicates of 18 birds. Broilers fed the lowest ME level presented the lowest weight gain (WG) and worst feed per unit gain (P < 0.01). Metabolizable energy intake increased (P < 0.01) with progressive increments of ME, which, however, did not affect caloric conversion (CC, P > 0.05). Pelleted diets promoted higher FI, WG, ME intake (P < 0.01) and better feed per unit gain and CC (P < 0.05) compared with mash. In mash diets, increasing dietary ME levels promoted a linear increase in WG (P < 0.01) and reduced feed per unit gain (P ≤ 0.05), but did not affect FI (P > 0.05). In pelleted diets, on the other hand, increasing ME levels linearly reduced FI (P < 0.05) and feed per unit gain (P < 0.01). Broilers fed pelleted diets presented higher abdominal fat deposition than those fed mash (P < 0.05). Increasing ME levels reduced the coefficients of ileal apparent digestibility of DM (P < 0.01) and total starch (P < 0.05) but did not affect the digestibility of other evaluated nutrients. The digestibility of all nutrients was lower when pelleted diets were fed compared with mash. Increasing inert material inclusion in the diets at the expense of soybean oil to reduce dietary ME levels promoted higher pellet durability index values (P < 0.05) and the percentage of fines (P < 0.01). Overall, the results suggest that pelleted diets promote better broiler performance because they increase FI, since the digestibility of dietary fractions is reduced. Chickens consuming low-energy pelleted diets may increase FI to compensate for energy deficit. In contrast, broilers fed mash diets may have reached their maximum intake capacity and did not regulate FI by changing feed energy density. When feeding pelleted diets, dietary energy reduction should be considered to reduce feed costs and to improve the carcass quality of broilers.  相似文献   

7.
The aim of this study was to test the hypothesis of an improved gut environment of post-weaning piglets when administered a blend of essential oils (EO; thymol and cinnamaldehyde) and an enzyme combination (xylanase and β-glucanase (XB)) either alone or in combination. To assess the effect of dietary treatments, faecal nutrient digestibility and microbial counts, as well as ileum histology and gene expression of inflammatory mediators were evaluated. One hundred and ninety-two weaned piglets were allocated into four experimental treatments, and fed the basal diet (CTRL) either without or with EO, XB or their combination (EO+XB) for a 42-day period. The experiment concerning digestibility was designed with two periods (period I: days 15 to 21; period II: days 29 to 35) and the faeces were collected on days 20, 21, 34 and 35. On day 42, six piglets from each treatment were slaughtered. It was found that EO, XB and EO+XB supplementation did not affect (P>0.05) the growth performance of the piglets from days 0 to 42. Moreover, no dietary effect on faecal score was observed. Faecal digestibility of dry matter, organic matter, ash, dietary fibre, lipid, CP and NDF were increased from period I to period II (P<0.01 to P=0.06), while no effect (P>0.05) of EO, XB or their combination on the faecal digestibility was observed at both periods. Compared with the CTRL diet, dietary XB reduced the faecal Lactobacillus and Escherichia coli counts but increased the Lactobacillus to Coliforms ratio on day 42 (P=0.02, 0.03 and 0.03, respectively), and all the additives supplementations decreased the counts of faecal Coliforms on day 42 (P<0.01). XB supplementation increased the villus to crypt ratio (P=0.04) and reduced the mucosal macrophages number (P<0.01) in the ileum compared with the CTRL group, and dietary EO or EO+XB decreased the number of lymphatic follicles (P=0.01 and P<0.01, respectively) and mucosal macrophages (P=0.02 and P<0.01, respectively). In addition, the interleukin (IL)-1α was downregulated in piglets treated with EO+XB compared with the EO group (P=0.02). In conclusion, the administration of EO, XB or their combination was effective in improving ileum histology, and EO+XB supplementation might benefit the modulation of the expression of ileum inflammatory cytokines in piglets.  相似文献   

8.
Heat stress (HS) dramatically impairs the growth performance of broiler chickens, mainly as a consequence of reduced feed intake due to the loss of appetite. This study was aimed at evaluating the alterations induced by chronic HS conditions on the morphological and morphometric features of the gastrointestinal (GI) tract and on the expression of some enteroendocrine cells (EECs) involved in the regulation of feed intake in chickens. Three hundred male chickens (Ross 308) were divided into two experimental groups and raised either in thermoneutral environment for the whole fattening period (0–41 days) (TNT group) or subjected to chronic HS conditions (30 °C for 24 h/day) from 35 to 41 days (HS group). Samples of proventriculus, duodenum, jejunum and cecum were collected from 24 broilers (12/group). Haematoxylin-eosin was used for the morphometric evaluations, while immunohistochemistry was applied for the evaluation of EECs expressing ghrelin (GHR), cholecystokinin (CCK), neuropeptide Y (NPY), glucagon-like peptide-1 (GLP-1), and serotonin (5-HT). In the proventriculus, HS reduced total wall thickness and mucous layer height (P ≤ 0.01) as well as mean diameter, circumference, and area of the compound tubular glands (P ≤ 0.001) with respect to TNT. The small intestine of HS birds was characterised by decreased villous height and total thickness (duodenum, P ≤ 0.01; jejunum, P ≤ 0.001), whereas crypt depth and width were reduced only in the jejunum (P ≤ 0.01). HS had negligible effects on the morphological aspects of the cecum. In the proventriculus, an increase in GHR and NPY EECs was observed in response to HS (P ≤ 0.001). Similarly, the small intestine villi of the HS group showed greater GLP-1 (P ≤ 0.05), 5-HT (P ≤ 0.001) and CCK (P ≤ 0.01) EECs. Moreover, the expression of 5-HT EECs was higher in the duodenal (P ≤ 0.01) and jejunal (P ≤ 0.01) crypts of HS birds, whereas GLP-1 and CCK EECs increased only in jejunal crypts (P ≤ 0.05). Finally, 5-HT EEC expression was increased in the cecum of HS group (P ≤ 0.01). In conclusion, these outcomes demonstrate that chronic HS induces morphometric alterations not only in the small intestine but also in a key organ such as the proventriculus. Furthermore, HS conditions affect the presence and distribution of EECs, suggesting that some GI peptides and biogenic amine may be implicated in the regulation of appetite and voluntary feed intake in heat-stressed broiler chickens.  相似文献   

9.
Twenty male crossbred calves were divided into four equal groups. Calves in groups I and II were fed wheat straw ad libitum with a concentrate mixture with or without monensin (30 mg per day per animal). Calves in groups III and IV were fed wheat straw ad libitum with 70% of the allocated concentrate mixture and had free access to urea molasses mineral block (UMMB) with or without monensin (100 ppm). Wheat straw intake was higher (P<0.05) in UMMB supplemented groups, but total dry matter (DM) and crude protein (CP) intake did not differ. ME (Mcal per day) intake was higher (P<0.05) in UMMB supplemented groups. Digestibility of DM, OM, EE, and NDF did not differ due to UMMB or monensin supplementation, although ADF digestibility was increased (P<0.01) with UMMB supplementation. Although the N balance was similar among the groups, the Ca and P balances were higher in UMMB supplemented groups. Blood glucose level was increased (P<0.05) due to monensin treatment but plasma urea N level did not differ. Average body weight gain, feed conversion efficiency, protein utilisation efficiency, and energy utilisation efficiency were higher (P>0.05) in monensin treated groups without any change in body composition. Replacing 30% of a concentrate mixture with a cold process UMMB increased the proportional contribution of wheat straw to DM intake but had no effect on animal performance. However, supplementation with monensin increased the blood glucose level, protein and energy deposition, as well as body weight gain and feed efficiency, but with no change in the wheat straw and total DM consumption.  相似文献   

10.
Feed efficiency is an important trait in the future sustainability of pig production, however, the mechanisms involved are not fully elucidated. The objective of this study was to examine nutrient digestibility, organ weights, select bacterial populations, volatile fatty acids (VFA’s), enzyme and intestinal nutrient transporter gene expression in a pig population divergent in feed efficiency. Male pigs (n=75; initial BW 22.4 kg SEM 2.03 kg) were fed a standard finishing diet for 43 days before slaughter to evaluate feed intake and growth for the purpose of calculating residual feed intake (RFI). Phenotypic RFI was calculated as the residuals from a regression model regressing average daily feed intake (ADFI) on average daily gain (ADG) and midtest BW0.60 (MBW). On day 115, 16 pigs (85 kg SEM 2.8 kg), designated as high RFI (HRFI) and low RFI (LRFI) were slaughtered and digesta was collected to calculate the coefficient of apparent ileal digestibility (CAID), total tract nutrient digestibility (CATTD), microbial populations and VFA’s. Intestinal tissue was collected to examine intestinal nutrient transporter and enzyme gene expression. The LRFI pigs had lower ADFI (P<0.001), improved feed conversion ratio (P<0.001) and an improved RFI value relative to HRFI pigs (0.19 v. −0.14 SEM 0.08; P<0.001). The LRFI pigs had an increased CAID of gross energy (GE), and an improved CATTD of GE, nitrogen and dry matter compared to HRFI pigs (P<0.05). The LRFI pigs had higher relative gene expression levels of fatty acid binding transporter 2 (FABP2) (P<0.01), the sodium/glucose co-transporter 1 (SGLT1) (P<0.05), the glucose transporter GLUT2 (P<0.10), and the enzyme sucrase–isomaltase (SI) (P<0.05) in the jejunum. The LRFI pigs had increased populations of lactobacillus spp. in the caecum compared with HRFI pigs. In colonic digesta HRFI pigs had increased acetic acid concentrations (P<0.05). Differences in nutrient digestibility, intestinal microbial populations and gene expression levels of intestinal nutrient transporters could contribute to the biological processes responsible for feed efficiency in pigs.  相似文献   

11.
12.
Abstract

The present study was undertaken to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, constituting 15% of diets for growing pigs, influenced daily body gain, feed conversion, apparent faecal digestibility and nitrogen and energy balances. Eight castrated crossbreed pigs (30 – 80 kg live weight) were used in a replicated 4 × 4 Latin-square design with one control diet and three fibre containing diets. Daily body weight gain and feed conversion were not affected by the dietary treatments. The apparent faecal digestibility of organic matter (OM) and energy were significantly lower for the fibre diets (OM: 0.81 – 0.85; energy: 0.78 – 0.83) compared to the control diet (OM: 0.88; energy: 0.86). The apparent faecal digestibility of crude protein (CP) was lower for the fibre diets (0.71 – 0.78) compared to the control diet (0.83), although it was only significantly lower for the sugar beet pulp and pectin residue diets. The pectin residue diet, which contained the highest amount of dietary fibre, lignin and insoluble non-starch polysaccharides, had the lowest digestibility of OM, CP and energy. There was a tendency (p = 0.07) for a diet effect on retained nitrogen in proportion to digested nitrogen, where the sugar beet pulp and pectin residue diets had numerically the highest values. Heat production and retained energy in proportion to metabolizable energy intake were not affected by fibre inclusion. It was concluded that the inclusion of sugar beet pulp, soya bean hulls and pectin residue in diets for growing pigs decreased the apparent faecal digestibility and in the diets with sugar beet pulp and pectin residue higher utilization of digested nitrogen for retention compensated for the lower amount of digested nitrogen.  相似文献   

13.
One of the most debated topics in pig production is the need to study, understand and change the production system in order to improve nutrient efficiency, becoming more environmentally friendly. The nitrogen excretion has highly deleterious effects on the environment, and it is necessary to develop tools that help to reduce the excretion of this compound without compromising productivity. Therefore, two models were generated to estimate the efficiency of weight gain in relation to excreted nitrogen in post-weaning piglets. Data for testing these models were obtained from previous master and PhD studies carried out at the Federal University of Rio Grande do Sul, Animal Science Laboratory using piglets in the post-weaning phase with results for performance and digestibility. The database that was constructed was composed of raw data from 10 studies carried out between 2000 and 2016, on a total of 726 piglets weaned at ages between 17 and 28 days, and to which 62 different treatments were applied. An exploratory analysis of the data was done by evaluating scatter plots and histograms, and variables representing different treatments were used in a stepwise multiple linear regression analysis, with the F-test used as the selection criterion. Two models were generated that either considered the nitrogen retained or not, to estimate the ratio between weight gain and excreted nitrogen using generalized linear model procedure. The authors analyzed the behavior of each variable to evaluate whether the equation generated was biologically coherent. Weight gain, dry matter intake, nitrogen intake, metabolizable energy intake, retained nitrogen and urinary nitrogen were all significant (P<0.001) variables in model I, and in model II the variable fecal nitrogen was also included. The models had high coefficients of determination (R2 of model I and II were 0.9013 and 0.8271, respectively), and the nitrogen ingested variable was the one that most strongly influenced growth efficiency. When the retained nitrogen variable was removed from the model, there was a reduction in the fit of the equations. It was possible to conclude that both of the two models generated could be applied and the amount of nitrogen ingested had the greatest influence on growth efficiency related to nitrogen excretion.  相似文献   

14.
Two experiments were performed to determine the feeding value of amylopectin-rich waxy maize.A digestibility trial (A) was made with growing pigs (5 castrated Large White males per group) kept in digestibility crates for total collection of excreta for 10 consecutive days. The diets consisted exclusively of Funk's G 4384 maize cultivars, either regular (Group 1) or waxy (Group 2), supplemented with minerals, vitamins and essential amino acids. Waxy maize was better utilized than regular maize, the respective values being: digestibility of energy, 90.3 versus 88.4 (P < 0.05); digestible energy, 3980 ± 28 vs. 3914 ± 13 kcal/kg dry matter (P < 0.10); apparent metabolisable energy, 3887 vs. 3832 kcal/kg dry matter (P < 0.10) or corrected ME, 3839 vs. 3787 kcal/kg dry matter (P < 0.10). The utilization of crude protein was slightly in favour of waxy maize; nitrogen digestibility being 86.3 vs. 85.6 (NS) and retained nitrogen, 15.2 vs. 14.2 g/d (P < 0.10).In Trial B, utilization of two types of maize of the same variety, LG 11, which were isogenic except for the waxy gene, was studied with a total of 128 piglets weaned at 5 weeks. The waxy maize (Group 2) or regular maize (Group 1) was introduced at the level of 70% into isonitrogenous diets (20% CP) offered until the age of 9 weeks. In these conditions, a noticeable effect was found in favour of waxy maize. Average daily gain was 470 g (Group 2) versus 434 g (Group 1), a significant increase of 8% (P < 0.05); feed conversion ratio was 1.76 (Group 2) versus 1.84 (Group 1) (P < 0.10).The digestibility in vitro of the two types of maize used in Trial B was also assayed. The rate of hydrolysis of waxy maize starch was more rapid in the presence of piglet pancreatic juice, a fact suggesting that the energy of this type of maize is more available for monogastric animals.  相似文献   

15.
The present study was undertaken to investigate how three different fibre sources, sugar beet pulp, soya bean hulls and pectin residue, constituting 15% of diets for growing pigs, influenced daily body gain, feed conversion, apparent faecal digestibility and nitrogen and energy balances. Eight castrated crossbreed pigs (30-80 kg live weight) were used in a replicated 4 x 4 Latin-square design with one control diet and three fibre containing diets. Daily body weight gain and feed conversion were not affected by the dietary treatments. The apparent faecal digestibility of organic matter (OM) and energy were significantly lower for the fibre diets (OM: 0.81-0.85; energy: 0.78-0.83) compared to the control diet (OM: 0.88; energy: 0.86). The apparent faecal digestibility of crude protein (CP) was lower for the fibre diets (0.71-0.78) compared to the control diet (0.83), although it was only significantly lower for the sugar beet pulp and pectin residue diets. The pectin residue diet, which contained the highest amount of dietary fibre, lignin and insoluble non-starch polysaccharides, had the lowest digestibility of OM, CP and energy. There was a tendency (p = 0.07) for a diet effect on retained nitrogen in proportion to digested nitrogen, where the sugar beet pulp and pectin residue diets had numerically the highest values. Heat production and retained energy in proportion to metabolizable energy intake were not affected by fibre inclusion. It was concluded that the inclusion of sugar beet pulp, soya bean hulls and pectin residue in diets for growing pigs decreased the apparent faecal digestibility and in the diets with sugar beet pulp and pectin residue higher utilization of digested nitrogen for retention compensated for the lower amount of digested nitrogen.  相似文献   

16.
The objective of this study was to assess effects of feed intake and NDF content of highly digestible grass-clover silage on chewing behavior, fecal particle size distribution and apparent digestibility in restrictively fed heifers. Four grass-clover silages (Lolium perenne, Trifolium pratense and Trifolium repens) were harvested in 2009 at different regrowth stages, resulting in silages with NDF contents of 312, 360, 371 and 446 g/kg dry matter (DM), respectively. Four rumen-fistulated Jersey heifers (343±32 kg BW) were fed silage at 90% of ad libitum levels in a 4×4 Latin square design, replicated with further restricted feeding levels (50%, 60%, 70% or 80% of ad libitum) in a balanced 4×4×4 Greco-Latin square design. Eating activity was estimated from test meal observations, while rumination activity was estimated from jaw movements logged by a jaw recorder system. Total tract digestibility was estimated from chromic oxide marker and fecal spot sampling, and fecal particle size distribution in washed and freeze-dried particulate DM was determined by dry sieving (2.36, 1.0, 0.5, 0.212 and 0.106 mm, and bottom bowl). Higher NDF content of silage stimulated longer eating time per kg DM intake (P<0.001), while reduced feeding level caused a reduction in eating time per kg DM intake (P<0.001) and NDF (P<0.001). Rumination time per kg DM intake (P<0.01) increased with reduced feeding level, with less effect of feeding level at lower NDF contents (P<0.01) and more rumination with greater NDF content (P<0.01). Relative to NDF intake, rumination time increased with greater NDF content (P<0.01), at a higher rate with reduced feeding level (P<0.05). Digestibility of potentially digestible NDF (DNDF) decreased with greater NDF content (P<0.001) and increased with reduced feeding level (P<0.05). Increasing NDF content resulted in more particulate DM in feces (g/kg DM; P<0.05) and larger mean particle size (P<0.001). In conclusion, feeding heifers with grass-clover silages of decreasing NDF content increased chewing time relative to NDF intake, reduced mean fecal particle size, and increased DNDF digestibility. Restricting feeding level made heifers eat for a shorter time period while rumination and total chewing was increased, causing the ratio between eating and rumination time to decrease with lower intake of forage fiber. Particle size reduction and digestibility depended mostly on changes in NDF content, especially the indigestible NDF content.  相似文献   

17.
Lupine seeds have the potential to be an alternative to imported dietary proteins. In rabbits, it has been indicated that White lupine seed (WLS) is a suitable protein source. Other lupine species, for example, narrow-leaved lupine seed (NLS), have not yet been tested in rabbit diets. Two experiments were carried out to evaluate the effect of the dietary inclusion of NLS on growth performance, sanitary risk index (SRI), coefficients of total tract apparent digestibility (CTTAD) and nitrogen output in fattening rabbits. Narrow-leaved lupine was compared with WLS as a main protein source. For Experiment I, a total of 198 Hyplus rabbits (37 days of age) were allocated into two groups (99 rabbits per group), fed the WLS I diet (120 g/kg of WLS cv. Amiga) or the NLS I diet (150 g/kg of NLS cv. Probor), and used for performance and carcass trait evaluations. In addition, the CTTAD of the diets and the nitrogen output were determined in 10 Hyplus rabbits per treatment (37 days of age). For Experiment II, a total of 180 Hyplus rabbits (32 days of age) were allocated into two groups (90 rabbits per group), fed the WLS II diet (120 g/kg of WLS cv. Amiga) or the NLS II diet (130 g/kg of NLS cv. Primadona), and used for performance and carcass trait evaluations. In addition, the CTTAD of the diets was determined in 10 Hyplus rabbits per treatment (32 days of age). Regardless of the treatment, the dietary inclusion of NLS had a negative effect on growth of the rabbits. The nitrogen excretion and coefficients of nitrogen retention of rabbits were not affected by the treatments. In Experiment I, SRI (37 to 80 days of age) was higher in rabbits fed the NLS I diet than in those fed the WLS I diet (38.4% v. 23.2%, respectively; P = 0.031). Similarly, in Experiment II (32 to 74 days of age), SRI was higher in rabbits fed the NLS II diet than in rabbits fed the WLS II diet (37.8% v. 23.3%, respectively; P = 0.052). In conclusion, regardless of the variety, the dietary inclusion of NLS had no negative effect on the nitrogen output or dressing-out percentage of rabbits when compared to those of rabbits fed the WLS diets. With respect to the SRI and performance, however, NLS did not provide a satisfactory outcome.  相似文献   

18.
Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P > 0.05), FCR or SGR (P > 0.05) despite very different dietary fatty acid profiles. All organic plant oils had a positive effect on apparent lipid digestibility compared with the FO diet (P < 0.05), whereas there were no effects on the apparent digestibility of other macronutrients when compared with the FO diet (P > 0.05). Organic vegetable oils did not undergo auto-oxidation as opposed to the FO, and the FO diet consequently had a significantly negative effect on the apparent lipid digestibility. Feed intake was not affected by oxidation of any oils. In conclusion, the study demonstrated that it is possible to fully substitute FO with plant-based organic oils without negatively affecting nutrient digestibility and growth performance. Furthermore, plant-based organic oils are less likely to oxidize than FOs, prolonging the shelf life of such organic diets.  相似文献   

19.
《Small Ruminant Research》2007,68(2-3):149-156
This study was conducted to determine the effects of adding yeast culture and sodium bicarbonate to the finishing diets for lambs on intake, digestibility, rumina1 parameters and nitrogen retention. Twenty Pelibuey male lambs, weighing an average of 23 kg, were assigned to one of four treatment groups according to a completely randomized design with a 2 × 2 factorial arrangement. Treatments were: (1) no additive (NA); (2) 0.12% yeast culture (YC); (3) 0.5% sodium bicarbonate (SB); and (4) 0.12% YC and 0.5% SB. During the 7-day collection period, SB increased DM intake (P < 0.05), while YC had no effect (P > 0.05) on intake. Intake of non-fibrous carbohydrates (NFC) was increased (P < 0.05) with SB in the ration, but not by supplementing YC (P > 0.05). The YC had no effect (P > 0.05) on dry matter (DM), neutral detergent fiber (NDF) or non-fibrous carbohydrates digestibility. A higher intake of NFC with the SB treatments was associated with a lower (P < 0.05) digestibility. SB increased excretion of NDF (P < 0.05), which reduced its digestibility (P < 0.05) by more than 9 percentage units. Lambs consuming diets with SB had 27% more N retained, in contrast with those fed the basal diet without additives. Rumen pH was greater than the minimum considered to cause acidosis (≤pH 5.5). The SB reduced (P < 0.05) percent molar acetate and increased (P < 0.05) percent molar propionate, which is in contrast to what has been normally observed with dairy cattle research. A lower acetate to propionate ratio with the SB rations may be a result of a lower digestibility and a higher intake of NDF, which may have increased the rate of passage of fiber particles through the gastrointestinal tract.  相似文献   

20.
The aim of this work was to establish the response of growing sheep, goats and cattle to different nutritional environments. Data from 590 publications representing 2225 treatments were analysed. The results showed that each 10% increase in NDF was accompanied by 0.11 g/kg live weight (LW) and 0.32 g/kg metabolic live weight (LW0.75) decreases in DMI. Otherwise, the response of DMI to CP (CP%DM) content was curvilinear (P<0.01), without any significant difference in the slope between species. The percentage of concentrate (% CC) affected DMI curvilinearly, without any significant difference between species. This meta-analysis demonstrated the negative linear effect of NDF and the quadratic effect of CP concentration on organic matter digestibility (OMd). For growth performance, the three species responded curvilinearly to variations in metabolisable energy intake (MEI MJ/kg LW0.75) and digestible CP (DCPI g/kg LW0.75) intake (P<0.01). At the same level of MEI, average daily gain (ADG) varied with CP contents of the diet, and only the intercept differences were significant between the three levels (P=0.07). At the same level of DCPI, ADG varied with energy level (below maintenance (LE−−), 1 to 1.2×maintenance (LE−), 1.2 to 1.4× maintenance (ME+−), and >1.4, corresponding to maximum growth (HE+)). No significant difference was observed between LE−− and LE−, and no significant difference was observed between ME+− and HE+. For nitrogen balance, no difference was observed between species for a given level of nitrogen intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号