首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用PCR定点突变方法,对HPV581L1基因中痘苗病毒早期基因转录终止信号TTTTTNT结构进行修饰,并保留氨基酸不变.选用非复制型重组痘苗病毒为载体,将修饰的L1基因1.5kb和L2基因1.4kb分别插入痘苗病毒表达载体pJSD的7.5k和H6早期启动子之后,使之与非复制型重组痘苗病毒在TK区重组.经单斑筛选纯化,获得共表达HPV58L1、L2晚期蛋白的非复制型重组痘苗病毒疫苗实验株.该病毒在CEF细胞上连续传至第15代,经斑点杂交分析,重组痘苗病毒基因组中有L1和L2基因插入;经Western blot检测,重组病毒能稳定表达HPV581L1及L2蛋白.此结果为HPV58型非复制型重组痘苗病毒疫苗人用株的研究打下了基础.  相似文献   

2.
The use of vaccinia virus for the construction of recombinant vaccines   总被引:1,自引:0,他引:1  
Recombinant DNA technology has been used to engineer vaccinia virus genetically into a eukaryotic expression vector. An exciting outcome of these gene-splicing techniques is that after the insertion of one or more genes which encode the information for antigens responsible for conferring immunity toward an infectious disease, vaccinia can be adapted for the development of live recombinant vaccines. This review discusses recombinant vaccinia design and the feasibility of using these vaccines for disease protection.  相似文献   

3.
本文作者从痘苗病毒天坛株Sal I基因文库中确定并分离了痘苗病毒血凝素(HA)基因并组建了以HA为选择标记的系列表达载体,可用于不同结构和不同要求的外源基因在真核细胞中的表达。本系列载体的优点是,在病毒重组过程中可避开传代细胞系,一次性选择出可供疫苗使用的重组病毒。而HA阴性的重组病毒的毒力在家兔皮内试验中,未见明显下降。  相似文献   

4.
5.
The physical map locations of 62 temperature-sensitive mutations of vaccinia virus WR have been determined by marker rescue experiments, using cloned HindIII fragments of wild-type DNA. Since vaccinia virus DNA is not infectious, marker rescue was performed by infecting monolayers of cells at the nonpermissive temperature with a low multiplicity of the mutant to be rescued and transfecting with calcium phosphate-precipitated recombinant DNA. Wild-type recombinants were measured by using either a direct plaque assay technique or a two-step procedure in which the final yield of virus from the transfected cells was assayed at the permissive and nonpermissive temperatures. Mutants that had been previously assigned to the same complementation-recombination group were rescued by the same HindIII fragment, with the exception of three mutants in one group that were rescued by either one of two adjacent fragments. A comparison between the genetic linkage map of the temperature-sensitive mutations in 30 mutants with their physical locations demonstrated that not only was the order of the genetic map correct but also recombination frequencies generally reflected actual physical distances.  相似文献   

6.
The vaccinia virus WR A5L open reading frame (corresponding to open reading frame A4L in vaccinia virus Copenhagen) encodes an immunodominant late protein found in the core of the vaccinia virion. To investigate the role of this protein in vaccinia virus replication, we have constructed a recombinant virus, vA5Li, in which the endogenous gene has been deleted and an inducible copy of the A5 gene dependent on isopropyl-beta-D-thiogalactopyranoside (IPTG) for expression has been inserted into the genome. In the absence of inducer, the yield of infectious virus was dramatically reduced. However, DNA synthesis and processing, viral protein expression (except for A5), and early stages in virion formation were indistinguishable from the analogous steps in a normal infection. Electron microscopy revealed that the major vaccinia virus structural form present in cells infected with vA5Li in the absence of inducer was immature virions. Viral particles were purified from vA5Li-infected cells in the presence and absence of inducer. Both particles contained viral DNA and the full complement of viral proteins, except for A5, which was missing from particles prepared in the absence of inducer. The particles prepared in the presence of IPTG were more infectious than those prepared in its absence. The A5 protein appears to be required for the immature virion to form the brick-shaped intracellular mature virion.  相似文献   

7.
Major advances in the study of the molecular biology of RNA viruses have resulted from the ability to generate and manipulate full-length genomic cDNAs of the viral genomes with the subsequent synthesis of infectious RNA for the generation of recombinant viruses. Coronaviruses have the largest RNA virus genomes and, together with genetic instability of some cDNA sequences in Escherichia coli, this has hampered the generation of a reverse-genetics system for this group of viruses. In this report, we describe the assembly of a full-length cDNA from the positive-sense genomic RNA of the avian coronavirus, infectious bronchitis virus (IBV), an important poultry pathogen. The IBV genomic cDNA was assembled immediately downstream of a T7 RNA polymerase promoter by in vitro ligation and cloned directly into the vaccinia virus genome. Infectious IBV RNA was generated in situ after the transfection of restricted recombinant vaccinia virus DNA into primary chick kidney cells previously infected with a recombinant fowlpox virus expressing T7 RNA polymerase. Recombinant IBV, containing two marker mutations, was recovered from the transfected cells. These results describe a reverse-genetics system for studying the molecular biology of IBV and establish a paradigm for generating genetically defined vaccines for IBV.  相似文献   

8.
The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis was recombined into the genome of vaccinia virus. The recombinant induced spike-protein-specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with feline infectious peritonitis virus, these animals succumbed earlier than did the control group immunized with wild-type vaccinia virus (early death syndrome).  相似文献   

9.
We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4(+)-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4(+) T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.  相似文献   

10.
11.
A novel method has been developed to study the functional roles of individual vaccinia virus gene products that is neither limited by the possible essentiality of the target gene nor by the availability of conditional lethal mutants. The system utilises the E. coli lac repressor protein, the operator sequence to which it binds and the specific inducer IPTG. It allows the generation of recombinant viruses in which the expression of any chosen gene, and hence virus replication, can be externally controlled. In principle, this system is broadly applicable to the functional analysis of genes in any large DNA virus. This approach has demonstrated that the gene encoding the 14 kDa membrane protein of vaccinia virus is non-essential for the production of infectious intracellular virus particles, but essential for the envelopment of intracellular virions by Golgi membrane and for egress of mature extracellular viral particles. This is the first vaccinia virus protein shown to be specifically required for these processes. In vivo this system may prove useful as a means of attenuating recombinant vaccinia virus vaccines by preventing virus spread without reducing the amount of the foreign antigen expressed in each infected cell. Attenuation of other live virus vaccines may be developed in a similar way.  相似文献   

12.
Plasmid DNA, an effective vaccine vector, can induce both cellular and humoral immune responses. However, plasmid DNA raises issues concerning potential genomic integration after injection. This issue should be considered in preclinical studies. Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China. This virus has also been considered as a successful vaccine vector against a few infectious diseases. Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine. To develop a safer immunization strategy, a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice. Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity, preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation. No differences in T cell responses were observed among one, two or three DNA prime/rTV boost regimens. This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.  相似文献   

13.
The technologies of recombinant gene expression have greatly enhanced the structural and functional analyses of genetic elements and proteins. Vaccinia virus, a large double-stranded DNA virus and the prototypic and best characterized member of the poxvirus family, has been an instrumental tool among these technologies and the recombinant vaccinia virus system has been widely employed to express genes from eukaryotic, prokaryotic, and viral origins. Vaccinia virus is also the prototype live viral vaccine and serves as the basis for well established viral vectors which have been successfully evaluated as human and animal vaccines for infectious diseases and as anticancer vaccines in a variety of animal model systems. Vaccinia virus technology has also been instrumental in a number of unique applications, from the discovery of new viral receptors to the synthesis and assembly of other viruses in culture. Here we provide a simple and detailed outline of the processes involved in the generation of a typical recombinant vaccinia virus, along with an up to date review of relevant literature.  相似文献   

14.
15.
Vaccinia viruses have been genetically engineered to express foreign antigens. Immunization with these chimeric viruses protects experimental animals against challenge with the relevant infectious agent. These results, together with the successful history of vaccinia virus as an immunizing agent against smallpox, provide the impetus for employing live recombinant vaccinia viruses for the immunoprophylaxis of infectious diseases of both human and veterinary importance.  相似文献   

16.
17.
Over the past year improvements have been made in recombinant vaccinia virus gene expression and a new method for inserting DNA into the poxvirus genome has been developed, along with alternative methods for selecting recombinant viruses. Attenuated and non-replicating vaccinia virus and avian poxvirus vectors are now being used successfully. Field trials of an oral, wild-life rabies vaccine and phase 1 testing of human vaccines derived from vaccinia virus are underway.  相似文献   

18.
D Spehner  A Kirn    R Drillien 《Journal of virology》1991,65(11):6296-6300
A vaccinia virus recombinant containing the measles virus nucleoprotein gene was shown to induce the synthesis of a 60 kDa phosphorylated nucleoprotein similar to authentic measles virus nucleoprotein. Mammalian or avian cells infected with the recombinant virus displayed tubular structures reminiscent of viral nucleocapsids both in the cytoplasm and in the nucleus. Such structures could be labelled in situ by using an immunogold detection method specific for measles virus proteins. Electron microscopic examination of tubular structures purified from cells infected with the vaccinia virus recombinant indicated that they displayed most of the features of measles virus nucleocapsids, although their length was on the average shorter. These results demonstrate the spontaneous assembly of measles virus nucleocapsids in the absence of viral leader RNA and provide a means for a detailed molecular analysis of the requirements for nucleocapsid assembly. Furthermore, these findings raise the possibility of achieving complete assembly of measles virus particles, devoid of infectious RNA, by using a vaccinia virus vector.  相似文献   

19.
M Merchlinsky  B Moss 《Cell》1986,45(6):879-884
The junctions, separating unit-length genomes in intracellular concatemeric forms of vaccinia virus DNA, are duplex copies of the hairpin loops that form the ends of mature DNA molecules present in infectious virus particles. Circular E. coli plasmids with palindromic junction fragments were replicated in vaccinia virus-infected cells and resolved into linear minichromosomes with vector DNA in the center and vaccinia virus DNA hairpins at the two ends. Resolution did not occur when the concatemer joint was less than 250 bp or when plasmids were transfected into uninfected cells, indicating requirements for a specific DNA structure and viral trans-acting factors. These studies indicate that concatemers can serve as replicative intermediates and account for the generation of flip-flop sequence variation of the hairpins at the ends of the mature vaccinia virus genome.  相似文献   

20.
人癌胚抗原-重组痘苗病毒的构建和制备   总被引:23,自引:0,他引:23  
痘苗病毒的基因组庞大,结构复杂而特殊,不可能将外源基因直接插入它的基因组,必须利用一种特殊的痘苗病毒质粒,才能构建成功重组痘苗病毒.在分析了痘苗病毒质粒pJ120〔含有我国天花疫苗-痘苗病毒天坛株761的启动子和胸苷激酶(thymidinekinase,简称TK基因),及含有人癌胚抗原(carcinoembrynicantigen,简称CEA)cDNA全序列的质粒p91023B-cea-17结构的基础上,设计出三步法构建了重组疫苗病毒质粒pJ-CEA.经酶切及PCR鉴定pJ-CEA中CEAcD-NA的存在,进一步用同源重组方法构建了表达人CEA的重组痘苗病毒,并以人体成纤维细胞作为宿主细胞,对CEA-重组痘苗病毒进行了大量培养.再次证实痘苗病毒是良好的真核表达载体,可以高效而准确地表达细胞膜糖蛋白CEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号