首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A novel protocol for antigen retrieval (AR) for immunohistochemistry (IHC) of retinoblastoma protein (pRB) in formalin fixed, paraffin embedded (FFPE) tissue sections was developed using 0.05% citraconic anhydride as the AR solution for heat treatment based on comparison of different methods. This new protocol has advantages including superior morphological preservation, greater reproducibility, and more intense staining after retrieval. Our study demonstrates the importance of comparing various AR protocols to obtain maximal IHC for standardization and for quantitative IHC.  相似文献   

2.
A novel protocol for antigen retrieval (AR) for immunohistochemistry (IHC) of retinoblastoma protein (pRB) in formalin fixed, paraffin embedded (FFPE) tissue sections was developed using 0.05% citraconic anhydride as the AR solution for heat treatment based on comparison of different methods. This new protocol has advantages including superior morphological preservation, greater reproducibility, and more intense staining after retrieval. Our study demonstrates the importance of comparing various AR protocols to obtain maximal IHC for standardization and for quantitative IHC.  相似文献   

3.
A recent study by Morgan et al. on the mechanism of the heating antigen retrieval (AR) has raised an interesting issue concerning calcium-induced modification of protein conformation demonstrated by immunohistochemistry (IHC). The current study is based on calcium-induced modification of thrombospondin (TSP) and Ki-67, as demonstrated by IHC using seven monoclonal antibodies (MAbs) to TSP and an MAb MIB1. Experiments were carried out on frozen tissue sections of bladder carcinoma and lymph node. Frozen sections were incubated with solutions of 50 mM CaCl2 and/or 10 mM EDTA at 4C overnight before formalin or acetone fixation for TSP and Ki-67, respectively. Sections were then fixed in 10% neutral buffered formalin or acetone before immunostaining. Seven MAbs to TSP, named Ab1 to 7 representing clone numbers of A4.1, D4.6, C6.7, A6.1, B5.2, A2.5, and HB8432, respectively, and MIB1 were utilized as primary antibodies. ABC was used as the detection system and AEC as the chromogen for immunohistochemical staining. An extracellular immunostaining pattern represented a positive result for TSP, and nuclear staining for MIB1. Frozen sections preincubated in 50 mM CaCl2 overnight at 4C showed significant loss of staining and/or altered staining pattern for six of the seven antibodies to TSP and MIB1 compared to positive controls not exposed to CaCl2. Lack of immunostaining of TSP and MIB1 attributable to exposure to CaCl2 could be partially recovered by incubating the frozen sections in EDTA. Calcium-induced modification of protein structure was demonstrated more than 10 years ago on the basis of immunochemical techniques. In this study, similar calcium-induced modification of protein was detectable by IHC in frozen tissue sections, suggesting that calcium-induced modification of protein structure may occur independently of fixation-induced modification. The fact that calcium binding may affect IHC staining is not surprising in view of the fact that antibody/antigen interactions are protein structure-dependent. However, in this experiment the change occurred before and independent of formalin fixation and does not necessarily imply a role for calcium in AR. There may be a valuable role for the use of chemical modification in visualization of protein structure changes in tissue sections by IHC. (J Histochem Cytochem 47:463-469, 1999)  相似文献   

4.
A satisfactory protocol of protein extraction has been established based on the heat-induced antigen retrieval (AR) technique widely applied in immunohistochemistry for archival formalin-fixed, paraffin-embedded (FFPE) tissue sections. Based on AR, an initial serial experiment to identify an optimal protocol of heat-induced protein extraction was carried out using FFPE mouse tissues. The optimal protocol for extraction of proteins was then performed on an archival FFPE tissue of human renal carcinoma. FFPE sections were boiled in a retrieval solution of Tris-HCl containing 2% SDS, followed by incubation. Fresh tissue taken from the same case of renal carcinoma was processed for extraction of proteins by a conventional method using radioimmunoprecipitation assay solution, to compare the efficiency of protein extraction from FFPE tissue sections with extraction from fresh tissue. As a control, further sections of the same FFPE sample were processed by the same procedure without heating treatment. Evaluation of the quality of protein extracted from FFPE tissue was done using gel electrophoresis and mass spectrometry, showing most identified proteins extracted from FFPE tissue sections were overlapped with those extracted from fresh tissue.  相似文献   

5.
Abstract

The overwhelming majority of antibodies useful for formalin fixed, paraffin embedded (FFPE) tissues require antigen retrieval to reverse the effect of formalin fixation and re-establish immunoreactivity. How this reversal happens is poorly understood. We developed a new experimental model for studying the mechanism of formalin fixation and antigen retrieval. Epitope mapping studies on nine antibodies useful for FFPE tissues revealed that each consisted of a contiguous stretch of amino acids in the native protein (linear epitope). Small peptides representing the epitopes of antibodies to human epidermal growth factor receptor type (HER2), estrogen, and progesterone receptors were attached covalently to glass microscope slides in a peptide array. Most peptides retained immunoreactivity after formalin fixation. Immunoreactivity was completely abrogated for all peptides, however, if an irrelevant large protein was present during formalin-induced cross-linking. We hypothesize that cross-linking the irrelevant protein to the peptide epitopes sterically blocked antibodies from binding. Antigen retrieval dissociates irrelevant proteins and restores immunoreactivity. Because the epitopes for clinical antibodies require only primary protein structure, the fact that antigen retrieval probably denatures the secondary and tertiary structure of the protein is irrelevant. The same mechanism may occur in tissue samples subjected to formalin fixation and antigen retrieval.  相似文献   

6.
A serial study was performed to develop a protein-embedding technique for standardization of immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded (FFPE) tissue sections. A protein carrier matrix must have two phases, a liquid phase to allow uniform mixing of a protein and a solid phase forming a 'block' that can be fixed and processed in the same manner as human tissue. This standardized protein block would serve as a source of thin sections for control of IHC and therefore must also withstand the boiling conditions of antigen retrieval (AR). After multiple experiments, a method was developed utilizing polymer microsphere (beads) as a support medium for protein. The method showed particular promise for quantitative IHC.  相似文献   

7.
As a review for the 20th anniversary of publishing the antigen retrieval (AR) technique in this journal, the authors intend briefly to summarize developments in AR-immunohistochemistry (IHC)–based research and diagnostics, with particular emphasis on current challenges and future research directions. Over the past 20 years, the efforts of many different investigators have coalesced in extending the AR approach to all areas of anatomic pathology diagnosis and research and further have led to AR-based protein extraction techniques and tissue-based proteomics. As a result, formalin-fixed paraffin-embedded (FFPE) archival tissue collections are now seen as a literal treasure of materials for clinical and translational research to an extent unimaginable just two decades ago. Further research in AR-IHC is likely to focus on tissue proteomics, developing a more efficient protocol for protein extraction from FFPE tissue based on the AR principle, and combining the proteomics approach with AR-IHC to establish a practical, sophisticated platform for identifying and using biomarkers in personalized medicine.  相似文献   

8.
The aim of this study was to evaluate seven anti-TIMP-1 (tissue inhibitor of metalloproteinase-1) monoclonal antibodies by immunohistochemical (IHC) staining of formalin-fixed, paraffin-embedded (FFPE) tissue. Detection of the TIMP-1 protein was studied by IHC in FFPE human archival normal and neoplastic samples. Indirect IHC technique was used, and the seven antibodies (clones VT1, VT2, VT4, VT5, VT6, VT7, and VT8) were tested in various concentrations using different pretreatment protocols. All seven VT antibodies specifically immunostained the cytoplasm of islets of Langerhans cells in normal pancreas, epithelial cells of hyperplastic prostate, tumor cells of medullary thyroid carcinoma, and fibroblast-like cells of malignant melanoma. Specificity of the anti-TIMP-1 antibodies was confirmed by several controls, e.g., Western blotting on proteins extracted from FFPE tissue showed that the VT7 antibody reacted specifically with a protein band of approximately 28 kDa, corresponding to the molecular mass of TIMP-1. However, sensitivity varied with the different antibodies. Use of heat-induced epitope retrieval (HIER) and the VT7 clone applied at low concentrations demonstrated more intense immunoreactivity with the TIMP-1-positive cell types compared to the other six clones. Furthermore, when tested on a range of normal and neoplastic endocrine tissues, the VT7 clone demonstrated immunoreactivity with all neuroendocrine cell types. In conclusion, all seven antibodies detected TIMP-1 protein in various normal and neoplastic FFPE tissues, but one clone, VT7, was superior for IHC staining of TIMP-1 in FFPE tissue sections when using HIER.  相似文献   

9.
10.
Picro-Sirius red is a routine diagnostic stain intended for the histological visualization of collagen fibers (fibrosis) in tissue. Multi-label immunohistochemistry is a powerful tool used by researchers to visualize different cell types and their location within a tissue specimen, and to observe co-localization of antigens. Combining the specificity of immunodetection with the simplicity of Sirius red staining will allow researchers to visualize multi-antigen detection in relation to fibrosis, a common histological feature of injury in many chronic diseases. Pre-treatment of formalin-fixed, paraffin-embedded tissue (FFPE) specimens with antigen retrieval is essential for the work-up of most commercially available antibodies. The most common form of antigen retrieval involves boiling tissue specimens in buffer to break the cross-linkages caused by formalin fixation. However, this method causes tissue modification and collagen fiber shrinkage leading to suboptimal results when counterstaining for Sirius red. Reduced heat and enzymatic digestion are antigen retrieval methods compatible with Sirius red counterstaining. This paper will discuss the difficulties faced when combining these two staining methods, and provide a detailed method for the simultaneous detection of antigen and Sirius red in FFPE tissues.  相似文献   

11.
12.
Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute’s Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers. Differences in IHC staining, relative to controls with a DTF of 1 hr, were observed in FFPE kidney tumor specimens after a DTF of ≥2 hr. Reductions in H-score and/or staining intensity were observed for c-MET, p53, PAX2, PAX8, pAKT, and survivin, whereas increases were observed for RCC1, EGFR, and CD10. Prolonged TIF of 72 hr resulted in significantly reduced H-scores of CD44 and c-Met in kidney tumor specimens, compared with controls with 12-hr TIF. An elevated probability of altered staining intensity due to DTF was observed for nine antigens, whereas for prolonged TIF an elevated probability was observed for one antigen. Results reported here and elsewhere across tumor types and antigens support limiting DTF to ≤1 hr when possible and fixing tissues in formalin for 12–24 hr to avoid confounding effects of these preanalytical factors on IHC.  相似文献   

13.
An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis.  相似文献   

14.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues. However, 2‐D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2‐D PAGE separation and MS identification of full‐length proteins extracted from FFPE skeletal muscle tissue. The 2‐D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2‐D maps of proteins from FFPE tissue following standard mass‐compatible silver staining. Protein spots from both FFPE and frozen tissue 2‐D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2‐D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh‐frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full‐length proteins from FFPE tissues might be suitable to 2‐D PAGE‐MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological‐fixed tissues.  相似文献   

15.
Formalin-fixed paraffin-embedded (FFPE) tissue specimens comprise a potentially valuable resource for retrospective biomarker discovery studies, and recent work indicates the feasibility of using shotgun proteomics to characterize FFPE tissue proteins. A critical question in the field is whether proteomes characterized in FFPE specimens are equivalent to proteomes in corresponding fresh or frozen tissue specimens. Here we compared shotgun proteomic analyses of frozen and FFPE specimens prepared from the same colon adenoma tissues. Following deparaffinization, rehydration, and tryptic digestion under mild conditions, FFPE specimens corresponding to 200 μg of protein yielded ∼400 confident protein identifications in a one-dimensional reverse phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The major difference between frozen and FFPE proteomes was a decrease in the proportions of lysine C-terminal to arginine C-terminal peptides observed, but these differences had little effect on the proteins identified. No covalent peptide modifications attributable to formaldehyde chemistry were detected by analyses of the MS/MS datasets, which suggests that undetected, cross-linked peptides comprise the major class of modifications in FFPE tissues. Fixation of tissue for up to 2 days in neutral buffered formalin did not adversely impact protein identifications. Analysis of archival colon adenoma FFPE specimens indicated equivalent numbers of MS/MS spectral counts and protein group identifications from specimens stored for 1, 3, 5, and 10 years. Combination of peptide isoelectric focusing-based separation with reverse phase LC-MS/MS identified 2554 protein groups in 600 ng of protein from frozen tissue and 2302 protein groups from FFPE tissue with at least two distinct peptide identifications per protein. Analysis of the combined frozen and FFPE data showed a 92% overlap in the protein groups identified. Comparison of gene ontology categories of identified proteins revealed no bias in protein identification based on subcellular localization. Although the status of posttranslational modifications was not examined in this study, archival samples displayed a modest increase in methionine oxidation, from ∼17% after one year of storage to ∼25% after 10 years. These data demonstrate the equivalence of proteome inventories obtained from FFPE and frozen tissue specimens and provide support for retrospective proteomic analysis of FFPE tissues for biomarker discovery.Formalin-fixed paraffin-embedded (FFPE)1 tissue samples are routinely prepared during the pathological characterization of clinical specimens and are abundantly available in pathology archives worldwide. The fixation process yields clinically relevant samples that can be stored at ambient temperature and are suitable for pathological examination by light microscopy even after years in storage. Given the wealth of clinical data associated with specimens collected over a span of decades, such as patient treatment regimens and outcomes, FFPE tissue represents a potentially valuable resource for biomarker discovery through retrospective analysis (1, 2).However, fixation of tissue in formalin leads to significant cross-linking among proteins and other biomolecules, rendering the samples incompatible with many biochemical analyses. Immunohistochemical (IHC) analysis of FFPE tissue has been conducted since the 1970s using either proteolysis or protein denaturants to expose antigenic regions of proteins (3, 4). Since the 1990s, detection of antigens in FFPE tissue has been improved through the development of so-called antigen retrieval techniques (5, 6). These methods involve application of heat in the presence of any of a variety of buffers resulting in the cleavage of methylene bridges formed during the course of fixation (2).Despite their utilization for IHC analysis, FFPE tissue samples have been largely overlooked in proteomics studies, due to the assumption that tissue fixation would make proteomic analysis intractable. Recent work appears to refute this notion. In 2005, Hood et al. (7) first described the successful application of shotgun proteome analysis to FFPE tissue. Using laser capture microdissected cells and an optimized extraction method, hundreds of proteins were identified from a cancerous prostate lesion and benign prostate hyperplasia, thus opening the door to comparative proteomic analyses of FFPE tissue. Moreover, the same study showed that the numbers and identities of proteins observed were remarkably similar when applying the method to frozen and FFPE mouse liver, thus lending support to the use of FFPE tissue in biomarker discovery studies. Since the initial demonstration of its feasibility, FFPE tissues from diverse origins including breast, liver, kidney, lymphoma, and bone successfully have been subjected to proteomic analyses (814).Although this work suggests the feasibility of biomarker discovery from FFPE tissue, most of these previous studies have been performed on small amounts of material with one-dimensional reverse phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The use of multidimensional peptide separations can extend the dynamic range of the LC-MS/MS analyses to detect lower abundance proteins. Recently, the use of capillary isotachophoresis as the first dimension in a multidimensional peptide separation strategy for analyzing FFPE tissue was described (8). In this study, thousands of proteins were identified out of <4 μg of digest from FFPE human liver sections. However, the apparatus used was an in-house, custom-designed system, not readily accessible to other laboratories. In several of these studies, proteins identified by a single peptide were accepted as valid identifications. Use of single peptide-based identifications elevates the probability of false positive protein identifications, and these identifications often constitute the majority of protein identifications (15).The equivalence of fresh/frozen and FFPE tissue proteomes is a critical issue in evaluating the suitability of employing FFPE tissues for biomarker discovery by comparative proteomic analyses. Hood et al. (7) and Guo et al. (14) reported comparisons from analyses of paired fresh and frozen tissue specimens. Guo et al. (14) reported an apparent overlap of 83% in protein identifications between FFPE and frozen brain tissue specimens, whereas Hood et al. (7) did not report the degree of overlap, but found that FFPE mouse liver tissue yielded about 88% of the identifications determined for frozen mouse liver tissue. The majority of protein identifications in both studies were based on single peptide assignments. These investigations did not explicitly address the effect of formaldehyde-derived modifications on the inventories of identified peptides.An unexplored question with FFPE tissue specimens is the extent to which normal variability in fixation process and storage duration affect the proteomes observed. The duration of tissue fixation is not highly standardized and may vary from hours to several days. One of the most attractive features of FFPE specimens is the opportunity for retrospective biomarker discovery, but the effects of storage for many years on tissue proteomes remains unknown.Here, we address these questions through detailed comparative studies of the analysis of fresh frozen and FFPE tissues by LC-MS/MS-based shotgun proteomics. We used the same fresh tissue specimens to prepare both frozen and FFPE samples for paired comparisons. We evaluated conditions for tissue lysis and digestion and the effects of fixation time and storage duration on the number of protein IDs obtained during shotgun proteomic analysis of FFPE tissue. We also characterized the differences in peptides observed between fixed and frozen specimens in an effort to understand the effect of fixation from a practical biomarker discovery standpoint. Furthermore, we compared analyses of fresh frozen and FFPE colon adenoma tissue by multidimensional LC-MS/MS using gel-based isoelectric focusing of peptides (Fig. 1). The results demonstrate a remarkable overlap in the number and identities of proteins between the fixed and frozen tissue and indicate that variations in duration of fixation and storage have a minimal effect on protein inventories obtained by shotgun proteomic analysis. The data indicate essential equivalence between protein inventories obtained from fresh frozen and FFPE tissue specimens by shotgun proteomics and validate the use of FFPE tissue specimens for biomarker discovery.Open in a separate windowFig. 1.Strategy for multidimensional LC-MS/MS analysis of FFPE tissue.  相似文献   

16.
17.
Abstract

It is accepted that aldehyde-based fixation of cells can affect immunodetection of antigens; however, the effects of tissue processing on immunodetection have not been analyzed systematically. We investigated the effects of aldehyde-based fixation and the various cumulative steps of tissue processing on immunohistochemical detection of specific antigens. DU145 (prostate) and SKOV3 (ovarian) cancer cell lines were cultured as monolayers on microscope slides. Immunohistochemical detection of Ki67/MIB-1 and proliferating cell nuclear antigen (PCNA) was evaluated after various fixation times in 10% neutral buffered formalin and after each of the several cumulative steps of tissue processing. The effect of antigen retrieval (AR) was evaluated concomitantly as an additional variable. Our results indicate that in addition to fixation, each of the tissue processing steps has effects on immunorecognition of the epitopes recognized by these antibodies. Extensive dehydration through ethanols to absolute ethanol had only modest effects, except for the detection of Ki67/MIB-1 in SKOV-3 cells where the effect was stronger. In general, however, establishment of a hydrophobic environment by xylene resulted in the greatest decrease in immunorecognition. AR compensated for most, but not all, of the losses in staining following fixation and exposure to xylene; however, AR gave consistent results for most steps of tissue processing, which suggests that AR also should be used for staining PCNA. The cellular variations that were observed indicate that the effects of fixation and other steps of tissue processing may depend on how antigens are packaged by specific cells.  相似文献   

18.
Antigen retrieval (AR), in which formalin-fixed paraffin-embedded tissue sections are briefly heated in buffers at high temperature, often greatly improves immunohistochemical staining. An important unresolved question regarding AR is how formalin treatment affects the conformation of protein epitopes and how heating unmasks these epitopes for subsequent antibody binding. The objective of the current study was to use model proteins to determine the effect of formalin treatment on protein conformation and thermal stability in relation to the mechanism of AR. Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to identify the presence of protein formaldehyde cross-links, and circular dichroism spectropolarimetry was used to determine the effect of formalin treatment and high-temperature incubation on the secondary and tertiary structure of the model proteins. Results revealed that for some proteins, formalin treatment left the native protein conformation unaltered, whereas for others, formalin denatured tertiary structure, yielding a molten globule protein. In either case, heating to temperatures used in AR methods led to irreversible protein unfolding, which supports a linear epitope model of recovered protein immunoreactivity. Consequently, the core mechanism of AR likely centers on the restoration of normal protein chemical composition coupled with improved accessibility to linear epitopes through protein unfolding.  相似文献   

19.
Fresh or frozen tissue samples will always be the best tissue source for the analysis of nucleic acids and proteins from tissues. However, their long-term storage is expensive and laborious. Much interest has therefore been focused on the question whether the almost infinite resources of formalin fixed and paraffin embedded tissue samples in the archives of pathology and histology departments can be used for research on biomarkers and molecular mechanisms of disease. In recent years the methods and protocols for the extraction of DNA, mRNA, miRNA and proteins from formalin-fixed and paraffin-embedded tissue samples have improved enormously. Especially, the possibilities of analysing DNA and miRNA in FFPE have reached a level that allows their application as a first line approach in the search for biomarkers. In contrast, many questions remain in terms of quantification of mRNA and protein expression levels in formalin-fixed and paraffin-embedded tissue samples. This review gives an overview on current potentials and limitations of the quantification of DNA, miRNA, mRNA and the proteome in FFPE tissue samples. The chemical events during formalin fixation and paraffin embedding and alternatives to formalin fixation are described. In addition, methods and general problems of DNA, miRNA, mRNA and protein extraction and the current knowledge on the feasibility and accuracy of quantitative gene expression analysis in FFPE tissues is summarized.  相似文献   

20.
We demonstrate that high-frequency and high-intensity ultrasound (US) can be applied to both tissue fixation and tissue processing to complete the conventional overnight formalin-fixation and paraffin-embedding (FFPE) procedures within 1 hr. US-facilitated FFPE retains superior tissue morphology and long-term room temperature storage stability than conventional FFPE. There is less alteration of protein antigenicity after US-FFPE preservation so that rapid immunohistochemical reactions occur with higher sensitivity and intensity, reducing the need for antigen retrieval pretreatment. US-FFPE tissues present storage stability so that room temperature storage up to 7 years does not significantly affect tissue morphology, protein antigenic properties, RNA distribution, localization, and quantitation. In addition, during fixation, tissue displays physical changes that can be monitored and reflected as changes in transmission US signals. As far as we know, this is the first effort to monitor tissue physical changes during fixation. Further study of this phenomenon may provide a method to control and to monitor the level of fixation for quality controls. The mechanism of less alteration of protein antigenicity by US-FFPE was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号