首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane lipids and fatty acids of Ochromonas danica were analyzed.Of the two betaine lipids, the homoserine lipid DGTS mainlycontains 14:0 and 18:2 fatty acids, while the alanine lipidDGTA is enriched in 18:0, 18:2 and 22:5 fatty acids. Of thepolar moiety of DGTA, improved NMR data are presented. On incubationof cells with [3,4-14C]methionine, DGTS as well as DGTA werelabelled. With [1-14C]methionine as a substrate, the label appearedin DGTS only. If double labelled [3H](glycerol)/[14C](polarpart)DGTS was used as a precursor, radioactivity was incorporatedspecifically into DGTA in which the isotope ratio was unchangedcompared to the precursor. Thus, the glyceryltrimethylhomoserinepart of DGTS acts as the precursor of the polar group of DGTA.Labelling of cells with [1-14C]oleate in a pulse-chase mannerand subsequent analysis of the label in the fatty acids andmolecular species of different lipids including DGTS and DGTA,suggested a clearly different role of the two betaine lipids:DGTS acts as a i) primary acceptor for exogenous C18 monoeneacid, ii) substrate for the desaturation of 18:1 to 18:2 acid,and iii) donor of mainly 18:2 fatty acid to be distributed amongPE and other membrane lipids. Into DGTA, in contrast, fattyacids are introduced only after elongation and desaturation.As a result, the biosynthesis of DGTA from DGTS involves a decarboxylationand recarboxylation of the polar part and a simultaneous deacylationand reacylation of the glycerol moiety. (Received January 28, 1992; Accepted March 11, 1992)  相似文献   

2.
Changes in the dry weight (dry wt.), total and neutral lipids,and fatty acid composition were determined in the cotyledonsand axis of Citrullus lanatus cv. Sugar baby seedlings duringtheir first 12 d growth in the dark, at 25 ? 1 ?C. The major stored reserves were mobilized between days 3 and8. The lipid concentration after day 4 decreased rapidly inthe cotyledons. On the first day the lipid concentration inthe axis was higher than in the cotyledons but decreased rapidlyand from day 5 up to the end of the experiments it remainedat very low values. In the cotyledons, the change in the fattyacid composition was relatively small compared to the significantchange observed in the axis. The neutral lipids of the cotyledonsdecreased sharply between days 2 and 6 while their fatty acidcomposition suffered no significant change. The axis, comparedto the cotyledons, contained a small but concentrated amountof neutral lipids, which decreased up to day 6. Thereafter,an increase was observed. The fatty acid composition of theaxis neutral lipids changed significantly, linoleic and oleicacid decreased while palmitic and linolenic acid increased. Key words: Citrullus lanatus, seed germination, seedling growth, lipids, fatty acids  相似文献   

3.
Phosphate limitation caused significant changes in the fatty acid and lipid composition of Monodus subterraneus. With decreasing phosphate availability from 175 to 52.5, 17.5 and 0 microM (K2HPO4), the proportion of the major VLC-PUFA, eicosapentaenoic acid (EPA), gradually decreased from 28.2 to 20.8, 19.4 and 15.5 mol% (of total fatty acids), respectively. The cellular total lipid content of starved cells increased, mainly due to the dramatic increase in triacylglycerols (TAG) levels. Among polar lipids, cellular contents of digalactosyldiacylglycerol (DGDG) and diacylglyceroltrimethylhomoserine (DGTS) increased sharply from 0.29 and 0.19 to 0.60 and 0.38 fg cell(-1), respectively, while that of monogalactosyldiacylglycerol (MGDG) was not significantly changed. In the absence of phosphate, the proportion of phospholipids was significantly reduced from 8.3% to 1.4% of total lipids, and the proportion of triacylglycerols (TAG) increased from 6.5% up to 39.3% of total lipids. The share of MGDG was substantially reduced, from 35.7% to 13.3%, while that of DGDG and DGTS reduced less from 18.3% to 15.1%, and 12.2% to 8.6%, respectively. The most distinctive change in the fatty acid composition was noted in that of DGDG, where the proportion of EPA, located exclusively at the sn-1 position, increased from 11.3% to 21.5% at the expense of 16:0, 16:1 and 18:1. In MGDG, however, the proportion of EPA did not change appreciably. In contrast to higher plants, DGDG accumulated under P-deprivation in M. subterraneus, did not resemble PC and the positional distribution of its fatty acids was not altered, preserving the C20/C16 structure of its molecular species. We suggest that under phosphate starvation DGTS is a likely source of C20 acyl groups that can be exported to the sn-1 position of DGDG and can partially compensate for the decrease in PE, the apparent source of C20 acyl-containing diacylglycerols in this alga. Moreover, accumulation of non-esterified 18:0 indicates that no polar lipid can replace PC, which appears to be the only lipid capable of C18 desaturation in this alga.  相似文献   

4.
Using capillary gas-liquid chromatography, we have analyzed the alteration in the total fatty acid, phospholipid and neutral lipid compositions of the monkey erythrocyte, after infection by the malarial parasite Plasmodium knowlesi. Data based on fatty acid quantitation show that the phospholipid composition is altered, with particularly large increases in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the most abundant phospholipids in normal and P. knowlesi-schizont-infected cells. Unesterified fatty acids were found to be less abundant in infected cells. The total fatty acid content of the cell is increased 6-fold during infection, and total fatty acid composition is also changed: the infected cells are richer in palmitate (+23%), oleate (+29%) and linoleate (+89%), but contained less stearate (-27%) and arachidonate (-40%). The determination of the fatty acid composition of individual phospholipids, neutral lipids and unesterified fatty acids showed that choline-containing phospholipids (PC and sphingomyelin) were not as altered in their fatty acid pattern as anionic phospholipids (PE, phosphatidylserine (PS) and phosphatidylinositol (PI) and lysophosphatidylcholine (lysoPC). Specific alterations in the fatty acid compositions of individual phospholipids were detected, whereas the rise in linoleic acid was the only change during infection that was recovered in each phospholipid (except PC), neutral lipid and unesterified fatty acids. The fatty acid composition of the neutral lipids and unesterified fatty acids was particularly modified: the only rise in arachidonic acid level was observed in these lipid classes after infection. The total plasmalogen level of the erythrocyte is decreased in infected cells (-60%), but their level is increased in PI.  相似文献   

5.
The biosynthesis of lipids in Cryptomonas strain CR-1 was studiedusing radioactive tracers. For studies of general aspects ofthe biosynthesis of lipids, the cells were labelled with [14C]NaHCO3or with [l,3-14]glycerol. In both cases, monogalactosyl diacylglycerol(MGDG) was the most heavily labelled lipid. Phosphatidylcholineand the alanine lipid DGTA were not labelled to specific activitiescomparable to those of MGDG and DGDG. It is improbable thatthe so-called "eukaryotic pathway", which has been suggestedas the pathway for the synthesis of " eukaryotic" molecularspecies of MGDG from PC in higher plants, is operative in Cryptomonascells which contain typical "eukaryotic" MGDG. The homoserinelipid DGTS was labelled to a significant level only in its polargroup. The C-3 and C-4 atoms of methionine, as well as the methylcarbon of methionine, were incorporated into both DGTS and DGTA,whereas the C-l carbon of methionine was incorporated uniquelyinto DGTS. Results of pulse-chase experiments with [3,4-14C]methionineand [methyl.-l4C]methionine suggest the conversion of DGTS toDGTA. (Received April 22, 1991; Accepted June 12, 1991)  相似文献   

6.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

7.
Two Haptophytes were isolated from extensive aquaculture ponds at Veta La Palma state (Guadalquivir estuary, SW Spain). They were identified as Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP based on their SSU rDNA homology to other Haptophytes and positioned in the Isochrysidaceae and Pavlovaceae families, respectively. Both Haptophytes had phosphatidilglycerol (PG) as the only phospholipid (PL), representing a low proportion of the total lipid content (0.8% in P. paradoxa VLP and 3.3% in D. vlkianum VLP). Instead, they were found to have different types of betaine lipids (BL) that were identified and characterized by HPLC/ESI-TOF-MS operating in multiple reacting monitoring (MRM) modes. P. paradoxa VLP had 2.2% of total lipids as diacylgyceryl-N-trimethylhomoserine (DGTS): it is the first Haptophyte reported to have this BL. Its total lipid fraction also contained 12.0% of diacylglyceryl-carboxyhydroxymethylcholine (DGCC) as the main BL and no diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) was detected. DGTA was only present (4.6% of total lipids) in D. vlkianum VLP: this was the main difference in BL content relative to P. paradoxa. D. vlkianum VLP also had DGTS (4.1%) and DGCC (7.6%): it is the first microalgae in which the simultaneous presence of these three BL has been demonstrated.The fatty acid profiles of P. paradoxa VLP and D. vlkianum VLP were close to those described for the major part of known members of the Isochrisidaceae and Pavlovaceae families, respectively, with the main differences due to the higher percentages of 18:1n9 (18.5%), 18:4n3 (12.6%) and 22:6n3 (9.3%) in the former. The corresponding fatty acid percentages for D. vlkianum VLP were 3.9%, 3.5% and 3.9%, respectively. D. vlkianum VLP showed higher 16:1n7 (16.1%) and 20:5n3 (9.4%) contents, whereas P. paradoxa VLP had significantly lower percentages of 16:1n7 (1.7%) and 20:5n3 (0.6%). Fatty acids of BL differed between both haptophytes. In DGTS from P. paradoxa VLP, 90.9% of total molecular species consisted of the 14:0–18:1 fatty acid combination, whereas DGTS from D. vlkianum showed a more diverse range of fatty acids. The unsaturation index (UI) of DGTS was lower (55.8) than that of total lipid UI (178.3) in P. paradoxa VLP. In D. vlkianum VLP the UI of DGTS was higher (146.9) and similar to that for total cell lipids (145.9). DGTA from D. vlkianum VLP had the highest UI (321.8) of all BL studied and it contained maximum levels (27.7%) of 22:6n3, representing 7.1 times the proportion of this fatty acid in the whole lipid extract. DGCC was enriched in 20:5n3 by a factor of around four in both microalgae. Due to different levels of this fatty acid in the two microalgae their respective 20:5n3 content in DGCC varied from 2.2% (P. paradoxa VLP) to 41.0% (D. vlkianum VLP) and these concentrations were also associated with UI values of 92.2 and 271.0, respectively. The specific differences in BL and fatty acids described in the present work for two phylogenetic distant Hatophytes is a contribution to a better understanding on the complex relationship between lipid composition and taxonomy of this important Division of microalgae. Present results can also be useful for a more accurate identification of primary producers in food web studies using fatty acids and intact polar lipids as trophic markers.  相似文献   

8.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

9.
We have hypothesized that among algae of alpine environment there could be strains particularly rich in long chain polyunsaturated fatty acids (LC-PUFA). Indeed, the chlorophyte (Trebuxiophyceae) Parietochloris incisa isolated from Mt. Tateyama, Japan, was found to be the richest plant source of the pharmaceutically valuable LC-PUFA, arachidonic acid (AA, 20:4omega6). The alga is also extremely rich in triacylglycerols (TAG), which reaches 43% (of total fatty acids) in the logarithmic phase and up to 77% in the stationary phase. In contrast to most algae whose TAG are made of mainly saturated and monounsaturated fatty acids, TAG of P. incisa are the major lipid class where AA is deposited, reaching up to 47% in the stationary phase. Except for the presence of AA, the PUFA composition of the chloroplastic lipids resembled that of green algae, consisting predominantly of C(16) and C(18) PUFAs. The composition of the extrachloroplastic lipids is rare, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) as well as diacylglyceryltrimethylhomoserine (DGTS). PC and PE are particularly rich in AA and are also the major depots of the presumed precursors of AA, l8:3omega6 and 20:3omega6, respectively.  相似文献   

10.
Over 40 higher plant species were examined for the contents of total lipids, phospholipids, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) by using micro-HPTLC. The results showed a wider range of plants containing betaine lipids. So, DGTS was found in some higher plant species, not studied earlier, belonging to Equisetophyta, Polypodiophyta; the lipid composition of many other species from Spermatophyta was also studied. It was demonstrated that more primitive plant species contained, as a rule, the betaine lipid DGTS. The quantitative data for the distribution of the main phospholipid classes PC, PE, and PG in various plant species and their tissues are given in this paper.  相似文献   

11.
The polar lipids and fatty acids of the microalgae Pavlova lutheriwere analyzed. The principal polar lipid components were monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), 1,2-diacylglyceryl-O-2'-hydroxymethyl-(N,N,N-trimethyl)-rß-alanine(DGTA) and 1,2-diacylglyceryl-3-O-carboxyhydroxymethylcholine(DGCC). Each polar lipid had a different set of combinationsof fatty acids, the most characteristic feature being the localizationof polyunsaturated fatty acids in the betaine lipids. The percentagesof polyunsaturated fatty acids in DGTA and DGCC were 70% and50%, respectively, and these fatty acids were localized at theC-2 position in the betaine lipids. An analysis of the incorporationof 14C-labelled compounds into the algal cells indicated theinvolvement of DGCC in acyl exchange. (Received October 17, 1994; Accepted October 2, 1995)  相似文献   

12.
The total lipids of Pinus halepensis pollen were separated into individual classes of neutral and polar lipids and the components of each class were identified and determined quantitatively. Free fatty acids, waxes and triacylglycerols were found as the main constituents of neutral lipids and phosphatidylcholine and phosphatidylethanolamine of polar lipids. Glycerylether derivatives were detected in neutral and polar lipid fractions. Free and esterified volatile fatty acids were also found in pollen and its neutral lipid fraction.  相似文献   

13.
The marine alga Chlorella minutissima contains DGTS (diacylglyceryl-N,N,N-trimethylhomoserine) as a major component (up to 44% of total lipids). This lipid is absent from other members of the Chlorococcales, except for C. fusca, which contains DGTS as 1.3% of total lipids. Contrary to expectation, the DGTS is accompanied by PC (phosphatidylcholine) as the major phospholipid. DGTS is normally highly saturated in the C-1 position of glycerol, but in C. minutissima, both C-1 and C-2 are acylated with EPA (eicosapentaenoic acid, 20:5) in the major molecular species (over 90% of total). The DGTS level shows a marked rhythmic fluctuation with time which is inversely correlated with the level of MGDG (monogalactosyldiacylglycerol), the other major lipid. Improved NMR data and the first electrospray MS data on this lipid are presented.  相似文献   

14.
This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.  相似文献   

15.
Wild female Crassostrea corteziensis oyster (n=245) were analyzed over one year to understand the main ecophysiological events associated to gonad development. Different indicators (mainly biochemical) were analyzed to infer: i) utilization and accumulation of energy reserves (e.g. neutral lipids, carbohydrates, proteins; vitellogenin), ii) membrane components provided by the diet as essential nutrients and indicative of cell proliferation (e.g. highly unsaturated fatty acids linked to phospholipids, sterols), iii) indicators of food availability (chlorophyll a in water, pigments in tissues, specific fatty acids and sterols), iv) gonad development (e.g. gonad coverage area, vitellin). A PCA analysis was applied to 269 measured variables. The first PC (PC1) was composed of total carbohydrate and lipid concentration, percentage of esterified sterols, fatty acids specific of diatoms; 16:1n-7/16:0, 20:5n-3 in neutral lipids with positive loadings and non methylene-interrupted fatty acids (NMI) in neutral lipids with negative loadings. The second PC (PC2) was composed of 18:4n-3 in lipid reserves and the concentration of zeaxanthin, a pigment typical of cyanobacteria with positive loadings and the proportion of 20:4n-6 in polar lipids with negative loading. The third PC (PC3) was composed of gonad coverage area (GCA) and the concentration of vitellin. Variation in GCA confirms that gonad development began in April with an extended period of spawning and rematuration from April to November. The PCA further shows that a second period of minimal maturation from November to March corresponds to the accumulation of reserves (PC1) together with an initial high availability of food (PC2) at the beginning of this period. These two periods are in accordance with the classical periods of allocation of energy to reserves followed by gonad development reported for several mollusks.  相似文献   

16.
Arctic species of Calanus are critical to energy transfer between higher and lower trophic levels and their relative abundance, and lipid content is influenced by the alternation of cold and warm years. All three species of Calanus were collected during different periods in Kongsfjorden (Svalbard, 79°N) and adjacent shelf during the abnormally warm year of 2006. Lipid composition and fatty acid structure of individual lipid classes were examined in relation with population structure. Wax esters dominated the neutral lipid fraction. Phosphatidylcholine (PC) dominated the structural lipids followed by phosphatidylethanolamine (PE). PC/PE ratios of 3–6 suggested an increase in PC proportions compared to earlier studies. Depending on the time scale, fatty acids of wax esters illustrated either trophic differences between fjord and offshore conditions for C. hyperboreus and C. finmarchicus or trophic differences related to seasonality for C. glacialis. Similarly, seasonality and trophic conditions controlled the changes in fatty acids of triglycerides, but de novo synthesis of long-chain monoenes suggested energy optimization to cope with immediate metabolic needs. Polar lipids fatty acid composition was species specific and on the long-term (comparison with data from the past decade) composition appears related to changes in trophic environment. Fatty acid composition of PC and PE indicated relative dominance of 20:5n-3 in PC and 22:6n-3 in PE for all three species. The combination of PE and PC acyl chain and phospholipid head group restructuring indicates an inter-annual variability and suggests that membrane lipids are the most likely candidate to evaluate adaptive changes in Arctic copepods to hydrothermal regime.  相似文献   

17.
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.  相似文献   

18.
Evolving from the endosymbiosis of a green algal cell by a filose amoeba or amoeboflagellate, the chimearic chlorarachniophytes combine unique features retained from both of their ancestral units. They have preserved from the endosymbiont only the nucleomorph and chloroplast. Four strains from three genera of this algal class were studied to identify a set of non‐phosphorous‐containing polar lipids and their associated fatty acids using the techniques of positive‐ion electrospray ionization/mass spectrometry (ESI/MS) and electrospray ionization/mass spectrometry/mass spectrometry (ESI/MS/MS). Fourteen non‐phosphorous‐containing polar lipids, classified as betaine lipids were primarily identified as forms of diacylglyceryl‐N,N,N‐trimethylhomoserine (DGTS) and its structural isomer diaclyglycerylhydroxymethyl‐N,N,N‐trimethyl‐β‐alanine (DGTA). Though the number of forms of DGTA and DGTA were roughly equal, DGTS composed more of the polar lipid portion present in three of the strains tested, while the fourth, Lotharella globosa, was dominated by forms of DGTA. In addition, a lipid tentatively identified as diacylglycerylcarboxyhydroxymethylcholine (DGCC) was observed twice in minor amounts. The polar lipid‐associated fatty acids of the aforementioned algal strains generally included dodecanoic acid (12:0), tetradecanoic acid (14:0), hexadecanoic acid (16:0), octadecanoic acid (18:0), octadecenoic acid (18:1), and eicosapentaenoic acid [20:5(n‐3)]. The differences in betaine lipid content among the species studied may allow for further conclusions to be drawn regarding the taxonomy of chlorarachniophytes.  相似文献   

19.
The effect of thiolactomycin (TLM), an inhibitor of type IIfatty acid synthase, on lipid synthesis in greening tissueswas examined. Pulse-chase experiments with Na[1-14C]acetatefor greening Avena leaves showed that continuous administrationof TLM (100µg/ml) decisively reduced phosphatidylcholine(PC) synthesis from acetate and blocked the subsequent conversionof PC to monogalactocyldiacylglycerol (MGDG), whereas temporaladministration of TLM (100 µ/ml) reduced PC synthesisfrom acetate by only 50% and did not block the conversion ofPC to MGDG. In the reduced PC synthesis, the ratio of oleicto palmitic acid decreased at earlier stages of greening, reflectingmore suppression of oleic acid synthesis. In later greeningstages the modulated fatty acid composition recovered to thenormal composition. In further steps, the fatty acid compositionwas not affected by TLM throughout the greening stages. Greeningof either etiolated Avena leaves or etiolated Brassica cotyledonsin the presence of TLM led to a marked decrease in the contentsof MGDG, digalactosyldiacylglycerol (DGDG) and phosphatidylglycerol(PG), but only a small change in the fatty acid compositionof their lipids. The only inhibition characteristic of TLM wasthe desaturation of palmitic to 3-trans-hexadecenoic acid inAvena leaf PG. These results suggest the presence of a mechanismby which the modulated fatty acid composition of lipids is normalizedin the flow of the synthesis. Electron microscopic observationsshowed that Avena chloroplasts developed into round forms ratherthan normal ellipse forms and the thylakoid membranes of Brassicachloroplasts were abnormally swollen everywhere in the presenceof TLM. Photosynthetic oxygen evolution in both tissues wasnot inhibited. (Received December 26, 1986; Accepted April 24, 1987)  相似文献   

20.
The lipids extracted from Chlorella cells at different developmentalstages were separated by chromatography on silicic acid into"nonpolar" (chloroform-eluate) and "polar" (methanol-eluate)lipid fractions. The lipids were also subjected to florisilchromatography to fractionate neutral glycerides and free fattyacids. Gas-liquid chromatographic analysis of these fractions has revealeda marked difference in their fatty acid compositions which werefound to undergo characteristic changes during the course ofalgal cell cycle. It was found that the fatty acids in the "nonpolar"lipid (fat) fraction are synthesized during the growth phasein the light and consumed during the process of cellular division. (Received September 24, 1966; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号