首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SixBradyrhizobium (lupin) strains were evaluated for their ability to produce siderophores using four chemical assays. Two strains gave positive reactions with chrome azurol S assay (CAS) and produced hydroxamate-type siderophores. The other four strains gave negative results for siderophore production using the four assays. Generation time, growth yield and hydroxamate production of one strain (WPBS 3201 D) were affected by the iron concentration of the culture medium and the previous culture history of the cells. Resuspension of washed cells grown previously in media supplemented with 0 and 20 μmol/L Fe into differing iron regimes (0, 0.5, 1, 2, 4, 8, 10, 15 and 20 μmol/L Fe) suggest that the extent of hydroxamate production depended on the growth history of the cells. Cells pregrown in 20 μmol/L Fe produced a high amount of hydroxamates compared with cells pregrown in iron-free medium when resuspended in medium containing up to 4 μmol/L Fe. Cells pregrown in 20 μmol/L Fe were more sensitive to iron repression than those pregrown in 0.5 μmol/L Fe. Mannitol was the best carbon source for siderophore production. Siderophore synthesis was inhibited by 4-chloromercuribenzenesulfonic acid, 2,4-dinitrophenol, sodium azide and MgCl2 suggesting that an energized membrane and a mercapto group are essential and required for hydroxamate synthesis in strain WPB5 3201 D.  相似文献   

2.
A sterile glucose-salts broth fortified with various metabolic inhibitors and nutritional supplements was inoculated with conidia of Penicillium rubrum P3290, and incubated quiescently at 28 degrees C for 14 days. Potassium sulfite and sodium metabisulfite at all test concentrations caused moderate reduction in rubratoxin formation; at high concentrations (greater than or equal to 2.7 X 10(-2)M) accumulation of fungal tissue was also retarded. Production of rubratoxin and cell mass was inhibited by p-aminobenzoic acid; syntheses of toxin were completely blocked by 7.5 X 10(-2)M of the vitamin. Effects of sodium fluoride on P. rubrum cultures grown on inorganic nitrogen sources varied from inhibition of mold growth and (or) rubratoxin A production to reduction in formation of rubratoxin B. With organic nitrogen sources, fluoride caused a 30 and 60% reduction in synthesis of rubratoxins A and B, respectively. Sodium acetate at all test concentrations enhanced formation of rubratoxin; mold growth was enhanced when acetate concentration was larger than or equal to 6.0 X 10(-2)M. A moderate reduction in mold growth was caused by lower acetate concentrations (1.2 X 10(-2)M or 2.4 X 10(-2)M). Sodium arsenite and iodoacetate at test concentrations blocked mold growth and toxin formation; sodium azide and 2,4-dinitrophenol caused a marked reduction in mold growth but inhibited toxin formation completely. However, sodium azide permitted slight growth and toxin formation when mold cultures were incubated for 28 days.  相似文献   

3.
Addition of different concentrations of sodium arsenite to the fermentation medium vised for the production of mitomycin antibiotics byStreptomyces caespitosus hindered the biosynthesis of mitomycins and led to the accumulation of 2-oxoglutarate, pyruvate and acetone. Mitomycin C isolated and purified using thin-layer chromatography in low concentration of about 0.1 μg/ml did not affect the RNA, DNA and protein biosynthesis of the growingBacillus subtilis, while at 10 μg/ml mitomycin C markedly affected RUA, DNA and protein biosynthesis.  相似文献   

4.
The effect of growth regulators on induction of androgenesis in coconut was investigated using seven different growth regulators at various concentrations and combinations. Three auxins (1-naphthalene acetic acid—NAA, indoleacetic acid—IAA, picloram) and three cytokinins (2-isopentyl adenine-2-iP, kinetin, zeatin) were tested either alone or in combination with 2,4-dichlorophenoxyacetic acid (2,4-D), using modified Eeuwens Y3 liquid medium as the basal medium. Among the tested auxins, 100 μM NAA in combination with 100 μM 2,4-D enhanced the production of calli/embryos (123) whereas IAA and picloram showed negative and detrimental effects, respectively, for androgenesis induction over 100 μM 2,4-D alone. Kinetin and 2-iP enhanced the production of calli/embryos when 100 μM 2,4-D was present in the culture medium. Both cytokinins at 10 μM yielded the highest frequencies of embryos (113 and 93, respectively) whereas zeatin (1 or 2.5 μM) had no impact on microspore embryogenesis. When calli/embryos (produced from different treatments in different experiments) were sub-cultured in somatic embryo induction medium (Y3 medium containing 66 μM 2,4-D), followed by maturation medium (Y3 medium without growth regulators) and germination medium (Y3 medium containing 5 μM-6-benzyladenine—BA and 0.35 μM gibberellic acid—GA3), plantlets were regenerated at low frequencies (in most treatments ranging from 0% to 7%).  相似文献   

5.
A mixed culture of microorganisms able to utilize 4,6-dinitro-ortho-cresol (DNOC) as the sole source of carbon, nitrogen and energy was isolated from soil contaminated with pesticides and from activated sludge. DNOC was decomposed aerobically in batch cultures as well as in fixed-bed column reactors. Between 65% and 84% of the substrate nitrogen was released as nitrate into the medium, and 61% of the carbon from uniformly 14C-labelled DNOC was recovered as 14CO2. The mixed microbial culture also decomposed 4-nitrophenol and 2,4-dinitrophenol but not 2,3-dinitrophenol, 2,6-dinitrophenol, 2,4-dinitrotoluene, 2,4-dinitrobenzoic acid or 2-sec-butyl-4,6-dinitrophenol (Dinoseb). Maximal degradation rates for DNOC by the bacterial biofilm immobilized on glass beads in fixed-bed column reactors were 30 mmol day−1 (l reactor volume)−1, leaving an effluent concentration of less than 5 μg l−1 DNOC in the outflowing medium. The apparent K s value of the immobilized mixed culture for DNOC was 17 μM. Degradation was inhibited at DNOC concentrations above 30 μM and it ceased at 340 μM, possibly because of the uncoupling action of the nitroaromatic compound on the cellular energy-transducing mechanism. Received: 27 March 1997 / Received revision: 5 June 1997 / Accepted: 7 June 1997  相似文献   

6.
A mutant of the hymenomyceteSchizophyllum commune was isolated which, owing to an extranuclear mutation, did not utilize acetate as the sole carbon source for growth. The growth of the mutant on glucose minimal medium was completely inhibited by sodium azide but was resistant to the effect of 2,4-dinitrophenol or oligomycin. Its endogenous respiration was cyanide-sensitive and was stimulated by 2,4-dinitrophenol to a considerably smaller degree than that of the wild-type strain. The experimental results obtained with this mutant suggest a defect in aerobic phosphorylation.  相似文献   

7.
Summary The growth and ethanol production by the d-xylose-fermenting yeasts Pichia stipitis and Pachysolen tannophilus under various conditions of aerobiosis responded similarly to the addition of the respiratory inhibitors potassium cyanide (KCN), antimycin A (AA), sodium azide and rotenone. However, the d-glucose-fermenting yeast Saccharomyces cerevisiae differed markedly from these yeasts in response to the inhibitors. In general the growth of the d-xylose-fermenting yeasts was inhibited by the respiratory inhibitors while ethanol production was either stimulated (especially when oxygen was available) or unaffected or inhibited by rotenone or AA or KCN and sodium azide, respectively. However, by exception KCN and AA stimulated ethanol production under aerobic conditions by Pichia stipitis and Pachysolen tannophilus respectively. Stimulatory or inhibitory effects by respiratory inhibitors were less marked in S. cerevisiae. These data suggest that unimpaired mitochondrial function is necessary for growth on d-xylose and optimal d-xylose fermentation. A requirement for membrane generated energy during d-xylose utilisation is indicated by 2,4-dinitrophenol inhibition of growth and fermentation.  相似文献   

8.
Summary Somatic proembryos of mango (Mangifera indica L. cv. Hindi) were co-cultivated withAgrobacterium tumefaciens strain A208 harboring pTiT37-Se::pMON 9749 (9749 ASE). Transformed somatic proembryos capable of growing on selection medium containing 200 μg/ml kanamycin produced the characteristic indigo blue precipitate in the presence of 5-bromo-4-chloro-3-glucuronic acid. These proembryos were chimeral consisting of transformed (blue) and nontransformed (yellow/white) cells. A stepwise selection strategy was found necessary to eliminate chimeras. a) Initial screening at 200 μg/ml kanamycin to enable growth of transformed cells, b) further screening at 400 μg/ml kanamycin to reduce chimeras, and c) recovery of pure transformed clones of proembryos in liquid selection medium with 100 μg/ml kanamycin. The integration of the NPT II and GUS genes into mango genome was confirmed by Southern hybridization.  相似文献   

9.
Abstract When sodium azide was added to cultures of Myxococcus coralloides D a rapid loss in turbidity was observed. The lysis occurred irrespective of the culture age. If the azide was added to cultures which had been division-inhibited with puromycin, lysis was also induced. Other uncoupling agents (2,4-dinitrophenol, methyltriphenylphosphonium bromide and N , N '-dicyclohexylcarbodiimide) were effective to induce lysis, but not the ionophores gramicidin D or valinomycin. Energizing the membrane by the addition of glycerol, glucose or ascorbate to prelytic cultures was a means of preventing the lytic events.  相似文献   

10.
Short exposure (1-2 h) of cultured cells, derived from a transplantable murine mammary carcinoma, to sodium arsenite, 2,4-dinitrophenol (DNP), carbonylcyanide-3-chlorophenylhydrazone (CCP) or disulfiram, induced resistance to a subsequent heat treatment, similar to heat-induced thermotolerance. Optimum resistance to a test heat treatment of 45 min at 45 degrees C after sodium arsenite exposure was obtained at a concentration of 300 microM, after DNP exposure at 3mM, after CCP at 300 microM and after disulfiram exposure in the range 1-30 microM. Exposure of cells to CCP, sodium arsenite or disulfiram led to enhanced synthesis of some proteins with the same molecular weight as 'heat shock' proteins. The pattern of enhanced synthesis of these proteins was agent specific. We could not detect significantly enhanced synthesis of the proteins after DNP using one-dimensional gel electrophoresis. These results suggest that enhanced stress protein synthesis is not a prerequisite for the development of thermal resistance.  相似文献   

11.
The ID50 values for azithromycin and clarithromycin inhibition of translation and of 50S assembly in Staphylococcus aureus cells have been measured. For clarithromycin, 50% inhibition of growth occurred at 0.075 μg/ml, and the effects on translation and 50S formation were equivalent at 0.15 μg/ml. The inhibition of these processes by azithromycin was less effective, with an ID50 of 2.5 μg/ml for growth and 5 μg/ml for inhibition of translation and 50S formation. The additive effects of each of these drugs on translation and 50S formation account quantitatively for their observed influence on cellular growth rates. In macrolide-treated cells, there was also a direct relationship between the loss of ribosomal RNA from the 50S subunit and its accumulation as oligoribonucleotides. These results are compared with the previously described effects of erythromycin on these same processes. Received: 30 June 1997 / Accepted: 12 August 1997  相似文献   

12.
The drugs griseofulvin (10 μg/ml), nalidixic acid (0.05 μg/ml), quinine dihydrochloride (50 μg/ml), quinine ethylcarbonate (50 μg/ml), quinine urea hydrochloride (50 μg/ml), quinine lactate (50 μg/ml), and pamaquine (50 μg/ml) were chosen for laboratory studies. The minimal inhibitory concentration of the drug was used for determining the range of drug concentration needed to produce “mutational synergism” with ultraviolet radiation. Forward mutation from streptomycin sensitivity to resistance was used as a marker for mutagenicity. No stimulatory or inhibitory effects were noted on viable counts and mutation frequency, when the drugs were added (20–60 μg/ml) to the growth medium of unirradiatedEscherichia coli HCR+, HCR, and irradiated HCR strains. These drugs increased mutation frequency and lethality of irradiated HCR+ bacteria. Incorporation of adenine (6 μm) into the minimal expression medium reverses the mutagenic effect of chloroquine. Chloroquine (50 μg/ml) did not interfere with the photoactivation of irradiated HCR+ cells. Our findings suggest that these chemicals selectively interfere with excision-repair.  相似文献   

13.
Summary Embryogenic callus was induced from primary leaves of Vigna unguiculata (L.) Walp. in MS medium (Murashige and Skoog, 1962) containing 2,4-dichlorophenoxyacetic acid (2,4-D). Greenish-white, friable embryogenic calluses were used to establish suspension cultures. A shaking speed of 90 rpm and 0.4 ml packed cell volume per 25 ml medium were found to be optimal for maintaining suspension cultures. Globular, heart-shaped and torpedo-shaped embryos were developed in suspension culture containing 4.52 μM 2,4-D. Maturation of cotyledonary-stage somatic embryos was achieved on 0.05 μM 2,4-D, 5 μM abscisic acid and 3% mannitol. Twenty-two percent of the embryos were converted into plants and survived; survival in the field was 8–10%.  相似文献   

14.
Thymineless death (TLD) was studied inLactobacillus acidophilus R-26. Thymine synthesis was inhibited with 5-fluorouracil (FU) or deoxyadenylate (dAMP) or by the absence of folic acid. In the case of FU, the maximum rate of dying was obtained at concentrations exceeding 0.1 μg/ml. This concentration did not affect the growth of the bacteria in the presence of thymine (4 μg/ml) and uracil (10 μg/ml). At higher FU concentrations up to 10 μg/ml, the course of TLD was unaltered, but the growth of bacteria in complete medium was slower. In the case of dAMP, the same course of TLD was obtained at a concentration of 150 μg/ml. If 1,500 μg dAMP/ml was used, the pre-death lag phase was shortened the rate of dying being unaltered. These concentrations of dAMP retarded the growth of bacteria even in a complete medium. If the thymine synthesis was prevented by the absence of folic acid the rate of dying was much lower than that caused by the presence of FU or dAMP. This was true even if the aminopterin was added. The authors conclude that the folic acid starvation did not inhibit completely the synthesis of thymine.  相似文献   

15.
Glucose-induced acid extrusion, respiration and anaerobic fermentation in baker’s yeast was studied with the aid of sixteen inhibitors. Uranyl(2+) nitrate affected the acid extrusion more anaerobically than aerobically; the complexing of Mg2+ and Ca2+ by EDTA at the membrane had no effect. Inhibitors of glycolysis (iodoacetamide, N-ethylmaleimide, fluoride) suppressed acid production markedly, and so did the phosphorylation-blocking arsenate. Fluoroacetate, inhibiting the citric-acid cycle, had no effect. Inhibition by uncouplers depended on their pKa values: 2,4,6-trinitrophenol (pKa 0.4) < 2,4-dinitrophenol (4.1) < azide (4.7) < 3-chlorophenylhydrazonomalononitrile (6.0). Inhibition by trinitrophenol was only slightly increased by its acetylation. Cyanide and nonpermeant oligomycin showed practically no effect; inhibition by dicyclohexylcarbodiimide was delayed but potent. The concentration profiles of inhibition of acid production differed from those of respiration and fermentation. Thus, though the acid production is a metabolically dependent process, it does not reflect the intensity of metabolism, except partly in the first half of glycolysis.  相似文献   

16.
The mechanism of arsenate inhibition of the glucose active transport system in wild-type cells of Neurospora crassa has been examined. Arsenate treatment results in approximately 65% inhibition of the glucose active transport system with only a small depression of cellular ATP levels. The transport system is not inhibited in cells treated with sodium arsenate in the presence of sodium azide. The transport inhibition is suppressed when orthophosphate is present during arsenate treatment, but is not reversed by orthophosphate when added after the arsenate treatment. The transport inhibition is completely reversed by treatment of the cells with mercaptoethanol. Gel chromatography of sonicates of intact cells which had been treated with [74As]arsenate reveals three radioactive peaks, one with the elution volume of arsenate, one with the elution volume of arsenite, and a high molecular-weight radioactive fraction. Treatment of the high molecular-weight radioactive fraction with mercaptoethanol results in the production of radioactive arsenite. In view of these findings, it is proposed that arsenate inhibition of the glucose active transport system in Neurospora involves transport of arsenate into the cells, probably via the orthophosphate transport system, reduction of the transported arsenate to arsenite, and interaction of arsenite with some component of the glucose active transport system, presumably via covalent binding with vicinal thiol groups.  相似文献   

17.
Summary Cis-diamminedichloroplatinum II (cis-DDP), an antitumor drug and the inactive trans-isomer were studied to evaluate their effects on cell multiplication, DNA synthesis, and surface morphology of the murine erythroleukemia cells (clone 6A11A). Short-term treatment of cells (1h) with 5 and 10μg/ml of cis-DDP resulted in a significant inhibition of cell multiplication. Continuous treatment with cis-DDP (up to 144 h) significantly arrested cell growth at 1,5, and 10μg/ml. The cells exposed to 10 μg/ml trans-DDP exhibited a slight decrease in cell multiplication; however, the 25-μg/ml treatments showed a modest inhibition of cell growth. Continuous treatment with cis-DDP resulted in a concentrationdependent decrease in DNA synthesis, although low-dose treatment (0.05 and 0.1 μg/ml), with a few exceptions, had no relative inhibitory effect. Likewise, trans-DDP treatments decreased tritiated thymidine incorporation; however, this inhibitory effect was not as drastic as with corresponding concentrations of cis-DDP. Scanning electron microscope studies revealed the formation of many giant cells and blebs at all short-term treatment concentrations of cis-DDP past the 48 h interval. Continuous treatment of cis-DDP at 1 μg/ml concentration produced giant cells with minute holes, whereas the 5 and 10 μg/ml exposure resulted in the formation of blebs and large holes and reduction of microvilli past the 48-h treatment period. At higher concentrations the continuous treatment of cis-DDP completely destroyed the cells. The surface morphology of trans-isomer treated cells, in most instances, resembled the corresponding untreated control cells.  相似文献   

18.
1. Extracellular ribonuclease is produced linearly for at least 3hr. by washed post-logarithmic-phase cells of Bacillus subtilis suspended in a medium containing maltose (1%) and casein hydrolysate (0·5%). 2. Low concentrations of actinomycin D (less than 2μg./ml.) stimulate ribonuclease formation, the maximum effect being observed with a concentration of 1μg./ml. Concentrations greater than 2μg./ml. are inhibitory. There is no parallel stimulation of α-amylase formed under the same conditions, and [14C]uracil incorporation into a perchloric acid-insoluble form is inhibited. 3. The actinomycin D-induced stimulation is not due to the presence of an activator, nor is the inhibition due to the release of an inhibitor by the cells. The effect is on the amount of ribonuclease produced in the medium. 4. Extracellular ribonuclease formation is partially inhibited by anaerobiosis, 2,4-dinitrophenol, sodium azide and by chloramphenicol and puromycin. 5. High concentrations of antibiotic do not completely inhibit ribonuclease formation, but a basal amount of enzyme representing 20min. synthesis in an uninhibited system is always produced. This `antibiotic-insensitive' enzyme could possibly represent preformed enzyme `in the pipe-line' en route to secretion. 6. The stimulated appearance of ribonuclease in the presence of 1μg. of actinomycin D/ml. is shown to be dependent on enzyme synthesis. The mechanism of this effect is discussed.  相似文献   

19.
Summary The relation of lysosomes to autophagy, in particular the lysosomal wrapping mechanism (LWM) is investigated ultracytochemically from the viewpoint of demonstrations of energy dependency of the LWM. An induction of the LWM was made in mouse subcutaneous histiocytes by subcutaneous administration of ovalbumin. Prior administration of the inhibitor of glycolysis (2-deoxyglucose) alone and of the oxidative phospholylation (sodium azide or 2,4-dinitrophenol) alone did not prevent the occurence of the LWM following ovalbumin administration, but a prior administration of a mixture of 2-deoxyglucose and 2,4-dinitrophenol or 2-deoxyglucose and sodium azide prevented the occurence of the LWM. These results suggest that in order for the LWM to take place ATP is required as an energy source.  相似文献   

20.
Speer HL 《Plant physiology》1973,52(2):142-146
The effect of arsenate, arsenite, 2,4-dinitrophenol, and anaerobiosis on early events in seed germination was investigated using both intact and punched seeds of lettuce (Lactuca sativa L.). It was found that punching the seed removes penetration barriers to the entrance of inhibitors without an undue loss of germination or light responses. The kinetics of the action of germination inhibitors were established by 2-hour pulse experiments. Arsenate and 2, 4-dinitrophenol have very different kinetics. The inhibition of germination in punched seeds by arsenate given in conjunction with phosphate compared with the lack of inhibition of arsenate plus phosphate on the growing seedling, suggest a distinct metabolic change in the germinating embryo at some time between the onset of germination and subsequent seedling growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号