首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Zborowski K  Zuchowski G 《Chirality》2002,14(8):632-637
Complexation of alkyl derivatives of 5-ethyl-5-phenyl-2-thiobarbituric acid (2-thiophenobarbital) enantiomers by beta-cyclodextrin was investigated by the AM1 method. The inclusion complexes of beta-cyclodextrin with neutral and anionic forms of these enantiomers have been modeled and energetically optimized. The chiral discrimination of enantiomers was analyzed in terms of differences in the interaction energies. The calculated interaction energies between each enantiomer of the investigated 2-thiobarbiturates and beta-cyclodextrin confirm the ability of beta-cyclodextrin to act as a mobile phase additive in reversed-phase HPLC to separate enantiomers by liquid chromatography and rationalize their order of elution.  相似文献   

2.
Stereoselective arylpropionyl-CoA thioester formation in vitro   总被引:3,自引:0,他引:3  
The inversion from R- to S-enantiomer that occurs for some arylpropionic acids may have both toxicological and therapeutic implications. To characterize some properties of this inversion, arylpropionyl-CoA thioester formation was studied in rat tissue homogenates and subcellular fractions for the enantiomers of fenoprofen, ibuprofen, and flurbiprofen. Thioesters were formed from (R)-fenoprofen (64%) and (R)-ibuprofen (33%) but not from the corresponding S-enantiomers or the enantiomers of flurbiprofen. This correlates with the extensive inversion of fenoprofen and ibuprofen and lack of inversion of flurbiprofen in vivo. Subcellular fractions from rat liver showed thioester formation to occur in mitochondria and microsomes but not cytosol. Once formed, the thioesters were readily racemized by whole rat liver homogenate, mitochondria, and cytosol, but only partially inverted (S:R = 0.3) in microsomes. Thioester formation from fenoprofen and ibuprofen was studied in tissue homogenate obtained from liver, diaphragm, kidney, lung, skeletal muscle, smooth muscle, fat, caecum, and intestines. The liver was at least 50-fold more efficient than the other tissues studied and would be expected to be a major organ of enantiomeric inversion. Our data support the hypothesis that R- to S-enantiomeric inversion of arylpropionic acids proceeds via the stereoselective formation of CoA thioesters followed by enzymatic racemization and hydrolysis of the thioesters to regenerate free acid.  相似文献   

3.
The possible contribution of pulmonary metabolism to the putative first-pass metabolism of 2-arylpropionic acid nonsteroidal antiinflammatory drugs has not been documented. Isolated perfused rabbit lungs, perfused with 4.5% bovine serum albumin or 5% dextran, were used to study the pulmonary elimination of (R)- and rac-ibuprofen, fenoprofen, and flurbiprofen. In the absence of protein binding, ibuprofen was metabolized via inversion and other pathways, whereas fenoprofen metabolism was essentially restricted to inversion of the (R)-enantiomer; fraction inverted (+/- SE) was 0.37 +/- 0.05 for (R)-ibuprofen and 0.85 +/- 0.03 for (R)-fenoprofen. In the presence of protein, neither ibuprofen nor fenoprofen was metabolized. Flurbiprofen did not undergo pulmonary elimination under any condition studied. This study illustrates that even though a tissue is capable of metabolism, particularly inversion of 2-arylpropionics, the quantitative importance of such elimination pathways may be minimal in the presence of the high degree of protein binding that is characteristic of these drugs.  相似文献   

4.
The simultaneous disposition of fenoprofen enantiomers in synovial fluid and plasma was studied in 11 patients with arthritis and chronic knee effusions treated with a single oral dose of 600 mg rac-fenoprofen. A plasma sample and a synovial fluid sample were collected simultaneously from each patient up to 16 h after the administration of fenoprofen. A stereospecific assay for fenoprofen using LC-MS-MS was developed and applied successfully to the analysis of the enantiomers in plasma (LOQ = 10 ng of each enantiomer/ml) and synovial fluid (LOQ = 25 ng of each enantiomer/ml). The values of the area under the curve (AUC) for the S-(+)-fenoprofen eutomer were approximately 2.5 times higher in plasma than in synovial fluid (256 vs 104 microg h/ml), while the values for the R-(-)-fenoprofen distomer were about four times higher in plasma than in synovial fluid (42.5 vs 10.5 microg h/ml). These data demonstrate accumulation of the S-(+)-fenoprofen eutomer in plasma and in synovial fluid, with concentrations versus time AUC (+)/(-) ratios of 6.0 in plasma and 9.9 in synovial fluid, suggesting a greater accumulation of the eutomer at the active site represented by synovial fluid than in plasma. This result demonstrates the importance of enantioselective methods and of analysis of synovial fluid rather than plasma in studies of the pharmacokinetics-pharmacodynamics of fenoprofen.  相似文献   

5.
The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug–drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)‐fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)‐fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)‐fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide–fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen‐relevant drug–drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)‐fenoprofen metabolism (P < 0.001). Different from (R)‐fenoprofen, the addition of BSA significantly increased the inhibition potential of andrographolide towards the metabolism of (S)‐fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)‐fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen–andrographolide interaction. Chirality 27:436–440, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Supramolecular chiral assemblies of R(-) and S(+) 2-butanol, in their neat form or when dissolved in their nonchiral isomer isobutanol, were evaluated by isothermal titration calorimetry (ITC) ensuing mixing. Dilution of 0.5 M solution of R(-) 2-butanol in isobutanol into the latter liberated heat of several calories per mole, which was approximately double than that obtained in parallel dilutions of S(+) 2-butanol in isobutanol. The ITC dilution profiles indicated an estimate of about 100 isobutanol solvent molecules surrounding each of the 2-butanol enantiomers, presumably arranged in chiral configurations, with different adopted order between the isomers. Mixings of neat R and S 2-butanol were followed by endothermic ITC profiles, indicating that, in racemic 2-butanol, both the supramolecular order and the intermolecular binding energies are lower than in each of the neat chiral isomers. The diversion from symmetrical ITC patterns in these mixings indicated again a subtle difference in molecular organization between the neat enantiomers. It should be noted that the presence of impurities, α-pinene and teterhydrofuran, at a level totaling 0.5%, did not influence the ITC heat flow profiles. The findings of this study demonstrate for the first time that chiral solutes in organic solvents are expected to acquire asymmetric solvent envelopes that may be different between the enantiomers, thus broadening this phenomenon beyond the previously demonstrated cases in aqueous solutions.  相似文献   

7.
The (R,S)-2-acetyl-1-(4'-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline ((R,S)-1) was previously identified as a potent non-competitive AMPA receptor antagonist able to prevent epileptic seizures and reduce AMPA-induced current in electrophysiological experiments. Through the enantiomeric resolution of racemate by chiral HPLC we already demonstrated that the (R)-1 enantiomer was the eutomer. Considering the poor water solubility, these compounds have been complexed with beta-cyclodextrin (beta-CyD). The effect of beta-cyclodextrin on the spectral features of molecules was quantitatively investigated, in fully aqueous medium by phase-solubility study and the obtained diagrams suggested that it forms complexes with a molar ratio 1:1. The binding constant (K((R)-1)=15889M(-1), K((R,S)(-1))=1079 M(-1)) and the complexation efficiency (CE) were calculated. Then the solid complexes in 1:1 molar ratio were prepared by the co-precipitation method and the FTIR-ATR measurements were carried out in order to confirm the host-guest interactions that drive the complexation process, by monitoring the significant differences of the spectra of the complexes with respect to those of the corresponding physical mixtures in the same molar ratio. The experimental data have been compared with molecular modelling studies and we confirmed our hypothesis.  相似文献   

8.
Im SH  Ryoo JJ  Lee KP  Choi SH  Jeong YH  Jung YS  Hyun MH 《Chirality》2002,14(4):329-333
Recently, it was reported that the chiral recognition ability of (R)-N-3,5-dinitrobenzoyl phenylglycinol derivative was examined as a new HPLC chiral stationary phase (CSP 1) for the resolution of racemic N-acylnaphthylalkylamines. However, the mechanism of chiral discrimination on the CSP remained elusive until now. In this study, a spectroscopic investigation of the chiral discrimination mechanism of CSP 1 was undertaken using mixtures of (R)-N-3,5-dinitrobenzoyl phenylglycinol-derived chiral selector (2) and each of the enantiomers of N-acylnaphthylalkylamines (3) by NMR study. First, the differences in free energy changes (DeltaDeltaG) upon diastereomeric complexation in solution between the complex of each isomer with chiral selector 2 by NMR titration were calculated. The values were then compared with those estimated by chiral HPLC. The chemical shift changes of each proton on the chiral selector and analytes were also checked and it was found that the chemical shift changes decreased continuously as the acyl group on analytes increased in length. This observation was consistent with the HPLC data. From these experimental results, the interaction mechanism of chiral discrimination between the chiral selector and the analytes is more precisely explained.  相似文献   

9.
The uptake kinetics of cisplatin analogs of 1,2-cyclohexanediamine(dach) isomers with various leaving groups, by human erythrocytes in plasma isotonic buffer, were studied. The experimental results showed that the uptake rate constants (k values) decrease with the change of leaving group in the sequence: chloride (Cl) > squaric acid (SA) > oxalate (OX) > demethylcantharic acid (DA), with the same dach isomer as carrier group. It is noteworthy that for the platinum (II) complexes with the same leaving group, the k values always reduce as: 1R, 2R-dach > 1R, 2S-dach > 1S, 2S-dach. This result reflects the chirality selectivity. No differences in reactivity to protein thiols and effects on membrane permeability were found for the R,R-, R,S-, S,S-isomeric complexes. It is proposed that the chirality selectivity in uptake is due to the recognition of the chirality of the platinum complexes by the erythrocyte membrane. The interactions between the chiral platinum complexes and the head groups of the membrane phospholipid molecules are probably involved.  相似文献   

10.
Enantiomers of 4-(1,1,2-trimethylhexyl)phenol, a chiral isomer of the endocrine disrupting chemical nonylphenol, have been resolved and isolated by preparative chiral HPLC. The absolute configurations of the enantiomers were then determined by an X-ray crystallographic study of the (-)-camphanoyl derivative of the first eluted enantiomer NP(35)E1. The first enantiomer (NP(35)E1) and the second enantiomer (NP(35)E2) eluted were found to have the S and R absolute configurations, respectively. The estrogenic potencies of the S and R enantiomers were tested by the E-screen assay. A slight difference was observed in the relative proliferative effect between the S enantiomer and R enantiomer in the E-screen assay.  相似文献   

11.
Stereochemistry of the metabolism of MDMA to MDA   总被引:2,自引:0,他引:2  
The chiral derivatizing reagent N-trifluoroacetyl-L-prolyl chloride (LTPC) was used to form diastereomers of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) which were resolved on an achiral gas chromatographic column using a mass spectrometer as a detector. Rats were subcutaneously dosed with 40 mg/kg of (+/-) MDMA.HCl and blood was obtained by decapitation four hours after dosing. Plasma was separated and extracted. The extract was derivatized on-column with LTPC. In addition to the two MDMA isomers, the demethylated metabolites, S(+) and R(-)-MDA were identified. In all experimental groups (male rats, food deprived male rats, female rats, post partum female rats, and mice) dosed with racemic MDMA, higher levels of the S(+) isomer of MDA relative to the R(-) MDA isomer were observed. This may be significant since it has been shown that the S(+) isomer of MDMA is the more neurotoxic isomer of the racemic drug of abuse MDMA.  相似文献   

12.
Since conformation of the molecule plays a vital role in the activity of drug, we have investigated the DNA interaction of a chromium(III) complex with ligands in two conformations. Chromium(III) complexes derived from chiral binaphthyl Schiff base ligands, viz. R- and S-2,2'-bis(salicylideneamino) 1,1'-binaphthyl, have been synthesized and characterized by mass, IR, and electronic spectra. The interaction of these R- and S-binaphthyl Schiff base chromium(III) complexes with CT-DNA was investigated with the goal of examining whether the chirality has an influence on the chromium(III)-DNA binding properties. The difference in chirality of the ligand did not show any striking difference in binding properties. The binding constants for R and S conformers were estimated to be 18 (+/-0.4) x 10(3) and 9.4 (+/-0.3) x 10(3) M(-1), respectively, through spectroscopic titrations. All the experimental results are suggestive that both the isomers are DNA groove binders. The results of steady-state as well as time-resolved fluorescence experiments, however, suggest that the R conformer has restricted mobility when bound to DNA because it is more deeply buried in the groove of DNA compared to the S isomer.  相似文献   

13.
Enantiospecific disposition of pranoprofen in beagle dogs and rats   总被引:1,自引:0,他引:1  
Imai T  Nomura T  Aso M  Otagiri M 《Chirality》2003,15(4):312-317
The pharmacokinetic characteristics of pranoprofen enantiomer were examined and compared with the disposition of the corresponding isomer after the administration of racemic pranoprofen to beagle dogs and rats. The plasma levels of (+)-(S)-isomer were significantly higher than those of (-)-(R)-isomer in dogs and rats by either intravenous or oral administration. Although the oral bioavailability and absorption rate constant between the (-)-(R)- and (+)-(S)-form was the same, the elimination rate constant of the (+)-(S)-form was significantly lower than that of the (-)-(R)-form in both dogs and rats. This discrepancy can be explained on the basis of differences in protein binding and the metabolism of the two enantiomers. The (-)-(R)-isomer was predominantly conjugated depending on its higher free plasma level and its faster metabolic rate than the (+)-(S)-form, and thus was excreted more rapidly in the urine and bile in the form of pranoprofen glucuronide. Furthermore, a (-)-(R)- to (+)-(S)-inversion occurred to the extent of 14% in beagle dogs, but not in rats. This chiral inversion might be an important factor in the slow elimination of the (+)-(S)-form in dogs. The most efficient organ for chiral inversion was the liver, followed by kidney and intestine.  相似文献   

14.
Wen YZ  Yuan YL  Shen CS  Liu HJ  Liu WP 《Chirality》2009,21(3):396-401
The enantioselective interaction between penicillium expansum alkaline lipase and chiral phenoxypropionic acid herbicide dichlorprop was studied by using UV differential spectrophotometry and fluorescence spectrophotometry in the presence of a pH 8, phosphate buffer solution. Chiral differences in the UV absorption and fluorescence spectra of lipase with dichlorprop were detected. (R)-Dichlorprop interacted the strongest with lipase as measured by both UV absorption and fluorescence spectrophotometry, followed by (Rac)-dichlorprop, while (S)-dichlorprop had the weakest interaction. The hydrophobic interaction seem to play the dominant role in the interactions and the (R)-enantiomer needed the minimum put of energy to drive the endothermic reaction, while the Rac-type and S-type compounds needed more for the reaction to take place. In the meantime, the catalytic hydrolysis of FDA with lipase show that (R)-DCPP could inhibit lipase the most strongly relatively at the same condition, perhaps because (R)-DCPP had a stronger combining effect and high enantiomeric selectivity on lipase than (Rac)-DCPP and (S)-DCPP.  相似文献   

15.
Interaction between platelet receptor and iloprost isomers   总被引:1,自引:0,他引:1  
Iloprost, a stable analog of prostacyclin, has been used for studying the interaction between prostacyclin and its effector cells such as platelets and vascular cells. The compound is usually prepared as a mixture of 16(S) and 16(R) stereoisomers. In this work, we compared the biological activity and platelet receptor binding characteristics between the two isomers. The 16(S) isomer was 20-times more potent than the 16(R) in inhibiting collagen-induced platelet aggregation. Equilibrium binding of iloprost isomers to platelet membrane receptors measured by rapid filtration method revealed that the specific binding data of 16(S) isomer was fit for a single binding species with Kd of 13.4 nM and Bmax 665 fmol/mg protein. By contrast, the Kd and Bmax of 16(R) isomer were 288 nM and 425 fmol/mg, respectively. To further assess different binding behavior of these two isomers, association rate was measured. The observed association rate of the S isomer was 0.036 s-1 and 0.001 s-1 for the R isomer at 15 nM iloprost and 2 mg/ml platelet membrane proteins. We postulate that the striking difference in the association rate with resultant difference in binding affinity and biologic activity between the two isomers was due to fitting of the molecule to the receptor channel. The 16(S) form has a more favorable orientation for fitting into the receptor. We conclude that the two iloprost isomers must be considered as two entirely different compounds when iloprost is used as the ligand for quantifying prostacyclin receptor binding.  相似文献   

16.
Circular dichroism (CD) spectroscopy was used for distinguishing different types of chiral interactions in host-guest complexes of achiral pyridino- and phenazino-18-crown-6 ligands with chiral aralkyl ammonium salts. The general feature of the CD spectra of many homochiral (e.g., (R,R)-host and (R)-guest) and heterochiral (e.g., (R,R)-host and (S)-guest) alpha-(1-naphthyl)ethylamine hydrogenperchlorate salt (NEA) complexes with chiral pyridino- and phenazino-18-crown-6 hosts is exciton interaction. The most interesting example is the coupling of the transitions of the chiral guest NEA with the energetically close transitions of the achiral phenazino-18-crown-6 host 6. The CD spectrum of the complex is predominated by exciton coupling between the (1)B(b) transition of the chiral guest and the (1)B(b) transition of the achiral host. The redshifted intense spectra of the complexes of (R)- or (S)-1-phenylethylamine hydrogenperchlorate salt (PEA) with the achiral diester-pyridino-18-crown-6 host 4 are indicative of merging the pi electron systems into one joint charge transfer chromophore. The appearance of weak bands with alternating sign in the spectrum of PEA complexes of the achiral "parent" pyridino-18-crown-6 host (1) indicates the presence of two or more conformers. The CD spectra of the complexes of achiral phenazino-18-crown-6 host 6 with PEA are also determined by pi-pi interaction. In addition to charge transfer bands, CD bands are also induced in the long-wavelength spectral region of the achiral host. The weak pi-pi interaction between the achiral phenazino-18-crown-6 host and methyl phenylglycinate hydrogenperchlorate (PGMA) or methyl phenylalaninate hydrogenperchlorate (PAMA) does not result in a definite spectral effect in the (1)L(a) region of the spectrum of the chiral guest, but its existence is proven by the weak CD bands induced in the long-wavelength spectral region of the achiral host.  相似文献   

17.
The fungus Verticillium lecanii has previously been shown to be capable of inverting the chirality of ibuprofen and 2-phenylpropionic acid from the (R)-enantiomer to the corresponding (S)-antipode, a phenomenon also observed in mammalian systems including man. An investigation is reported here into the substrate specificity of the enzyme system present in V. lecanii using the following 2-arylpropionic acids : ibuprofen, ketoprofen, indoprofen, suprofen, flurbiprofen and fenoprofen, together with the structurally related compounds 2-phenylbutyric acid, 2-phenoxypropionic acid, mandelic acid, atrolactic acid, etodolac and α-methoxyphenylpropionic acid. The results demonstrated that V. lecanii is capable of inverting the chirality of all the 2-arylpropionic acids investigated. All were inverted in the (R) to (S) direction with the exception of ketoprofen, where inversion was observed in the reverse direction. Using the structurally related compounds as substrates, the size of the alkyl substituent at the α-carbon at the methyl group, and the presence of the methyl group at the chiral centre, were found to be critical. These results suggest that V. lecanii could be used as a basis for the production of pure enantiomers of the 2-arylpropionic acids in commercial biotransformations.  相似文献   

18.
Amino acid-amino acid interaction energies have been derived from crystal structure data for a number of years. Here is reported the first derivation of normalized relative interaction from binding data for each of the four bases interacting with a specific amino acid, utilizing data from combinatorial multiplex DNA binding of zinc finger domains [Desjarlais, J. R. and Berg, J. M. (1994) Proc. Natl. Acad. Sci. USA, 91, 11099-11103]. The five strongest interactions are observed for lysine-guanine, lysine-thymine, arginine-guanine, aspartic acid-cytosine and asparagine-adenine. These rankings for interactions with the four bases appear to be related to base-amino acid partial charges. Also, similar normalized relative interaction energies are derived by using DNA binding data for Cro and lambda repressors and the R2R3 c-Myb protein domain [Takeda, Y., Sarai, A. and Rivera, V. M. (1989) Proc. Natl. Acad. Sci. USA, 86, 439-443; Sarai, A. and Takeda, Y. (1989) Proc. Natl. Acad. Sci. USA, 86, 6513-6517; Ogata, K. et al. (1995) submitted]. These energies correlate well with the combinatorial multiplex energies, and the strongest cases are similar between the two sets. They also correlate well with similar relative interaction energies derived directly from frequencies of bases in the bacteriophage lambda operator sequences. These results suggest that such potentials are general and that extensive combinatorial binding studies can be used to derive potential energies for DNA-protein interactions.  相似文献   

19.
A human serum albumin-based HPLC chiral stationary phase (HSA-CSP) has been examined as a tool to investigate binding of chiral drugs to HSA and drug-drug protein-binding interactions. Rac-oxazepam hemisuccinate (OXH) was used as a model compound and the chromatographic retention (k') of its enantiomers was determined after addition of displacers to the mobile phase. Compounds known to bind at the same site as OXH and at different sites were tested for their displacing capacities. Competitive binding interactions between the OXH enantiomers and displacers in the mobile phase were reflected by decreases in the k's of (R)- and (S)-OXH. The results indicate that retention on the HSA-CSP accurately reflects binding to native HSA and the technique can determine enantioselective and competitive binding interactions at specific sites on HSA. The HSA-CSP was also able to recognize separate binding areas for (S)- and (R)-OXH.  相似文献   

20.
The aminobenzo[a]quinolizines were investigated as a novel class of DPP-IV inhibitors. The stereochemistry of this class plays an important role in the bioactivity. In this study, the mechanisms of how different configuration of three chiral centers of this class influences the binding affinity were investigated by molecular dynamics simulations, free energy decomposition analysis. The S configuration for chiral center 3* is decisive for isomers to maintain high bioactivity; the chirality effect of chiral center 2* on the binding affinity is largely dependent, while the S configuration for chiral center 2* is preferable to R configuration for the bioactivity gain; the effect of chiral center 11b* on the binding affinity is insignificant. The chirality specificity for three chiral centers is responsible for distinction of two van der Waals contacts with Tyr547 and Phe357, and of H-bonding interactions with Arg125 and Glu206. Particularly, the Arg125 to act as a bridge in the H-bonding network contributes to stable H-bonding interactions of isomer in DPP-IV active site.
Figure
The S configuration for chiral center 3* is decisive for high bioactivity; the chirality effect of chiral center 2* on binding affinity is largely dependent, while the S configuration for 2* is preferable to R for bioactivity gain; the chirality specificity for chiral center 11b* to binding affinity is insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号