首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldolase was purified from rabbit liver by affinity-elution chromatography. By taking precautions to avoid rupture of lysosomes during the isolation procedure, a stable form of liver aldolase was obtained. The stable form of the enzyme had a specific activity with respect to fructose 1,6-bisphosphate cleavage of 20-28 mumol/min per mg of protein and a fructose 1,6-bisphosphate cleavage of 20-28mumol/min per mg of protein and a frutose 1,6-bisphosphate/fructose 1-phosphate activity ratio of 4. It was distinguishable from rabbit muscle aldolase, as previously isolated, on the basis of its electrophoretic mobility and N-terminal analysis. Muscle and liver aldolases were immunologically distinct. The stable liver aldolase was degraded with a lysosomal extract to a form with catalytic properties resembling those reported for aldolase B4. It is postulated that liver aldolase prepared by previously described methods has been modified by proteolysis and does not constitute the native form of the enzyme.  相似文献   

2.
Three distinct lines of evidence suggest interaction and possible complex formation between fructose 1,6-biphosphate aldolase (EC 4.1.2.13) and fructose 1,6-biphosphatase (EC 3.1.3.11) from rabbit liver. (1) Fructose 1,6-biphosphatase, which does not contain tryptophan, causes changes in the fluorescence emission spectrum of tryptophan in rabbit liver aldolase. (2) Aldolase reduces the affinity of binding of Zn2+ to the two high-affinity sites of fructose 1,6-biphosphatase. (3) Gel penetration coefficients are decreased for both enzymes when they are tested together, as compared to the coefficients observed when each is tested separately. These interactions were not observed when either liver enzyme was replaced by the corresponding enzyme purified from rabbit muscle; this specificity for enzymes purified from the same tissue excludes effects attributable to the catalytic activities of the enzyme. Maximum interaction was observed in the pH range between 8.0 and 8.5 and appeared to require the presence of two fructose 1,6-biphosphatase tetramers per tetramer of aldolase. The change in fluorescence emission spectrum was also observed, to a smaller extent, when muscle fructose 1,6-biphosphatase was added to a solution of muscle aldolase.  相似文献   

3.
Fructose-1,6-bisphosphate aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phyosphate-lyase, EC 4.1.2.13) was isolated from buffalo muscle by fractionation with ammonium sulphate and subsequent purification by phosphocellulose column chromatography using a linear salt gradient. As judged by gel filtration and electrophoresis in polyacrylamide gel, the enzyme was homogeneous with respect to size and charge. The molecular weight and Stokes radius of the enzyme were determined from its elution profile on a calibrated Sephadex column and the respective values were 162000 and 4.55 nm. The diffusion coefficient and frictional ratio were computed to be 4.8-10(7) cm2-s-1 and 1.27, respectively. The molecular weight of the polypeptide chain as measured by aodium dodecyl sulphate polyacrylamide gel electrophoresis was 40750. This taken together with the native molecular weight suggested a four-subunit model for the protein. The N- AND C-terminal residues of polypeptide chains were identified to be proline and tyrosine, respectively. At pH 8.0 the Michaelis-Menten constant and maximum attainable velocity were found to be 8.1 muM and 27 muM Fru-1,6-P2 split/min per mg, respectively. The buffalo muscle aldolase was found to be similar to rabbit muscle aldolase in physico-chemical properties. However, the two enzymes differ significantly in pH optimum; the p optima of the buffalo and rabbit enzymes were determined under identical conditions to be 8.0 and 8.6, respectively.  相似文献   

4.
A rat brain S100-binding protein, R40,000, has been isolated, characterized, and identified as fructose-1,6-bisphosphate aldolase. R40,000 was purified by ammonium sulfate precipitation, hydroxylapatite chromatography, dye-binding chromatography, and electroelution from sodium dodecyl sulfate-polyacrylamide gels. Microsequence analysis of a fragment of R40,000 revealed a 15-residue amino acid sequence which shows a high degree of homology to the amino acid sequence of fructose-1,6-bisphosphate aldolase from rabbit muscle and rat liver. Further characterization demonstrated that R40,000 has an amino acid composition, subunit molecular weight, and cyanogen bromide map similar to aldolase. In addition, purified aldolase interacts with S100 alpha and S100 beta by gel overlay, and aldolase enzyme activity is stimulated 2-fold in vitro by S100 alpha and S100 beta. S100 interacts predominantly with the C or brain-specific form of the enzyme in gels and stimulates the activity of the C-enriched form of the enzyme in a calcium-dependent manner. Altogether, these data suggest that fructose-1,6-bisphosphate aldolase may be an intracellular target of S100 action in brain.  相似文献   

5.
Phosphoglycollohydroxamic acid and phosphoglycollamide are inhibitors of rabbit muscle fructose-1,6-bisphosphate aldolase. The binding dissociation constants determined by enzyme inhibition and protein fluorescence quenching suggest that two distinct enzyme inhibitor complexes may be formed. The binding dissociation constants of the two inhibitors to Bacillus stearothermophilus cobalt (II) fructose-1,6-bisphosphate aldolase have also been determined. The hydroxamic acid is an exceptionally potent inhibitor (Ki = 1.2 nM) probably due to direct chelation with Co(II) at the active site. The inhibition, however, is time-dependant and the association and dissociation constants have been estimated. Ethyl phosphoglycollate irreversibly inhibits rabbit muscle fructose-1,6-bisphosphate aldolase in the presence of sodium borohydride, presumably by forming a stable secondary amine through the active-site lysine reside. A new condensation assay for fructose-1,6-bisphosphate aldolases has been developed which is more sensitive than currently used assay procedures.  相似文献   

6.
Fructosediphosphate aldolase from rabbit muscle is shown to accept β-D-fructofuranose-1,6-diphosphate as substrate, whereas α-D-fructofuranose-1,6-diphosphate can only be cleaved by the enzyme after a spontaneous change of configuration. The first order velocity constant of the spontaneous reaction was computed to be 0.55 sec?1 (at 25° C, pH 7.6). The equilibrium mixture of D-fructose-1,6-diphosphate was computed to 26% α- and 74% β-D-fructofuranose-1,6-diphosphate.  相似文献   

7.
The structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster has been determined by X-ray diffraction at 2.5 A resolution. The insect enzyme crystallizes in space group P2(1)2(1)2(1) with lattice replacement with rabbit muscle aldolase as a search model has been employed to solve the structure. To improve the initial phases real space averaging, including phase extension from 4.0 to 2.5 A, has been applied. Refinement of the atomic positions by molecular dynamics resulted in a crystallographic R-factor of 0.214. The tertiary structure resembles in most parts that of the vertebrate aldolase from rabbit muscle. Significant differences were found in surface loops and the N- and C-terminal regions of the protein. Here we present the first aldolase structure where the functionally important C-terminal arm is described completely.  相似文献   

8.
The adsorption of aldolase to myofibrils derived from rabbit skeletal muscle has been investigated by partition equilibrium studies at pH 6.8, I = 0.158 M, and the results interpreted in terms of an intrinsic association constant of 410,000 m?1 for the interaction of four sites on aldolase with myofibrillar sites, there being one such site for every 10–12 heptameric repeat units of F-actin-tropomyosin-troponin thin filament. Involvement of the active site of the enzyme in the adsorption process is indicated by the fact that competitive inhibition of the phenomenon by phosphate may be accounted for by an intrinsic association constant of 400 m?1 for the aldolase-phosphate interaction, a value in good agreement with that describing phosphate inhibition of the enzymatic hydrolysis of fructose-1,6-bisphosphate under similar conditions. On the basis of these equilibrium constants plus the aldolase and thin filament contents of muscle, resting muscle is indicated as containing a significant proportion (25–30%) of aldolase in the bound form, with changes in the subcellular distribution of the enzyme being likely during exercise due to the increased concentrations of Ca2+ and fructose-1,6-bisphosphate that then prevail.  相似文献   

9.
The combination of binding and kinetic approaches is suggested to study (i) the mechanism of substrate-modulated dynamic enzyme associations; (ii) the specificity of enzyme interactions. The effect of complex formation between aldolase and glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) on aldolase catalysis was investigated under pseudo-first-order conditions. No change in kcat but a significant increase in KM of fructose 1,6-bisphosphate for aldolase was found when both enzymes were obtained from muscle. In contrast, kcat rather than KM changed if dehydrogenase was isolated from yeast. Next, the conversion of fructose 1-phosphate was not affected by interactions between enzyme couples isolated from muscle. The influence of fructose phosphates on the enzyme-complex formation was studied by means of covalently attached fluorescent probe. We found that the interaction ws not perturbed by the presence of fructose 1-phosphate; however, fructose 1,6-bisphosphate altered the dissociation constant of the enzyme complex. A molecular model for fructose 1,6-bisphosphate-modulated enzyme interaction has been evaluated which suggests that high levels of fructose bisphosphate would drive the formation of the 'channelling' complex between aldolase and glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

10.
NMR spectroscopy showed fructose-1,6-bisphosphate aldolase from rabbit muscle accepts as substrates, in lieu of glyceraldehyde 3-phosphate, the oxoaldehydes methylglyoxal and phenylglyoxal but not hydroxymethylglyoxal. The enzyme catalyzed an aldol condensation between the oxoaldehyde and dihydroxyacetone phosphate to form a monophosphorylated diketone and was inactivated in the process. Circumvention of this reaction, by metabolism of oxoaldehydes to hydroxy acids, may be a metabolic role for the glyoxalase enzyme system. Transketolase and transaldolase were found not to accept oxoaldehydes as substrates in place of glyceraldehyde 3-phosphate.  相似文献   

11.
12.
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) is strongly inhibited by AMP in vitro and, therefore, at physiological concentrations of substrate and AMP, FBPase should be completely inhibited. Desensitization of rabbit muscle FBPase against AMP inhibition was previously observed in the presence of rabbit muscle aldolase. In this study, we analysed the kinetics of an FBPase catalyzed reaction and interaction between chicken muscle FBPase and chicken muscle aldolase. The initial rate of FBPase reaction vs. substrate concentration shows a maximum activity at a concentration of 20 microM Fru-1,6P2 and then decreases. Assuming rapid equilibrium kinetics, the enzyme-catalyzed reaction was described by the substrate inhibition model, with Ks approximately 5 microM and Ksi approximately 39 microM and factor beta approximately 0.2, describing change in the rate constant (k) of product formation from the ES and ESSi complexes. Based on ultracentrifugation studies, aldolase and FBPase form a hetero-complex with approximately 1:1 stoichiometry with a dissociation constant (Kd) of 3.8 microM. The FBPase-aldolase interaction was confirmed via fluorescence investigation. The aldolase-FBPase interaction results in aldolase fluorescence quenching and its maximum emission spectrum shifting from 344 to 356 nm. The Kd of the FBPase-aldolase complex, determined on the basis of fluorescence changes, is 0.4 microM at 25 degrees C with almost 1:1 stoichiometry. This interaction increases the I(0.5) for the AMP inhibition of FBPase threefold, and slightly affects FBPase affinity to magnesium ions, increasing the Ka and Hill coefficient (n). No effect of aldolase on the FBPase pH optimum was observed. Thus, the decrease in FBPase sensitivity to AMP inhibition enables FBPase to function in vivo thanks to aldolase.  相似文献   

13.
The interaction of aldolase with the myofibrillar matrix of rabbit skeletal muscle has been investigated by means of its effect on kinetic parameters for the enzyme-catalyzed cleavage of fructose 1,6-bisphosphate. Involvement of the active site in the enzymic interaction with the thin filament of muscle is indicated, the association constant for competitive inhibition of catalysis (420,000 M-1) being in excellent agreement with the value of 410,000 M-1 obtained under the same conditions (pH 6.8, I 0.16) from partition equilibrium studies of the aldolase-myofibril interaction (Kuter, M.R., Masters, C.J. and Winzor, D.J. (1983) Arch. Biochem. Biophys. 225, 384-389). A second kinetic study, designed to take into greater account the inhibitory effects of substrate and other phosphate-containing metabolites on the interaction of enzyme with myofibrils, has substantiated further the concept of aldolase existing as an equilibrium mixture of cytoplasmic and filament-bound forms in muscle tissue.  相似文献   

14.
R T Proffitt  L Sankaran 《Biochemistry》1976,15(13):2918-2925
Optimal conditions necessary for the reversible inactivation of crystalline rabbit muscle phosphofructokinase by homogeneous rabbit liver fructose-1,6-bisphosphatase have been studied. At higher enzyme levels (to 530 mug/ml of phosphofructokinase) the two proteins were mixed and incubated in a pH 7.5 buffer composed of 50 mM Tris-HC1, 2 mM potassium phosphate, and 0.2 mM dithiothreitol. Aliquots were removed at various times and assayed for enzyme activity. A time dependent inactivation of phosphofructokinase caused by 1-2.3 times its weight of fructose-1,6-bisphosphatase was observed at 30, 23, and 0 degree C. This inactivation did not require the presence of adenosine 5'-triphosphate or Mg2+ in the incubation mixture, but an adenosine 5'-triphosphate concentration of 2.7 mM or greater was required in the assay to keep phosphofructokinase in an inactive form. A mixture of activators (inorganic phosphate, (NH4)2SO4, and adenosine 5'-monophosphate), when added to the assay cuvette, restored nearly all of the expected enzyme activity. Incubations with other proteins, including aldolase, at concentrations equal to or greater than the effective quantity of fructose-1,6-bisphosphatase had no inhibitory effect on phosphofructokinase activity. Removal of tightly bound fructose 1,6-bisphosphate from phosphofructokinase could not explain this inactivation, since several analyses of crystalline phosphofructokinase averaged less than 0.1 mol of fructose 1,6-bisphosphate/320 000 g of enzyme. Furthermore, the inactivation occurred in the absence of Mg2+ where the complete lack of fructose-1-6-bisphosphatase activity was confirmed directly. At lower phosphofructokinase concentrations (0.2-2 mug/ml) the inactivation was studied directly in the assay cuvette. Higher ratios of fructose-1,6-bisphosphatase to phosphofructokinase were necessary in these cases, but oleate and 3-phosphoglycerate acted synergistically with lower amounts of fructose-1,6-bisphosphatase to cause inactivation. The inactivation did not occur when high concentrations of fructose 6-phosphate were present in the assay, or when the level of adenosine 5'-triphosphate was decreased. However, the inactivation was found at pH 8, where the effects of allosteric regulators on phosphofructokinase are greatly reduced. Experiments with rat liver phosphofructokinase showed that this enzyme was also subject to inhibition by rabbit liver fructose 1,6-bisphosphatase under conditions similar to those used in the muscle enzyme studies. Attempts to demonstrate direct interaction between phosphofructokinase and fructose-1,6-bisphosphate by physical methods were unsuccessful. Nevertheless, our results suggest that, under conditions which approximate the physiological state, the presence of fructose-1,6bisphosphatase can cause phosphofructokinase to assume an inactive conformation. This interaction may have a significant role in vivo in controlling the interrelationship between glycolysis and gluconeogenesis.  相似文献   

15.
A procedure for the coupling at pH 7.2 of p-carboxy benzene diazonium chloride with rabbit muscle aldolase supported on phosphocellulose is described and some of the spectroscopic, structural and catalytic features of the material obtained are reported. The tetrameric azoenzyme is homogeneous in disc gel electrophoresis even in the presence of 8 M urea. Twelve molecules of the reactant are bound to the protein. Eight azocysteins are identified by both spectroscopic studies and amino acid analysis. The presence of one azohistidine is suggested by the spectroscopic data along with the presence of other, as yet unknown, chromophores. The azoaldolase shows unchanged catalytic properties using both D-fructose 1,6-bisphosphate and D-fructose 1-phosphate as substrates, as compared with the native enzyme. The pH profile of the enzyme activity is broadened towards the alkaline region but no changes occur in the physiological range of pH.  相似文献   

16.
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.  相似文献   

17.
Phosphorylated fructose-1,6-bisphosphatase (FBPase) was isolated from rabbit muscle in an SDS/PAGE homogeneous form. Its dephosphorylation with alkaline phosphatase revealed 2.8 moles of inorganic phosphate per mole of FBPase. The phosphorylated FBPase (P-FBPase) differs from the dephosphorylated enzyme in terms of its kinetic properties like K(m) and k(cat), which are two times higher for the phosphorylated FBPase, and in the affinity for aldolase, which is three times lower for the dephosphorylated enzyme. Dephosphorylated FBPase can be a substrate for protein kinase A and the amount of phosphate incorporated per FBPase monomer can reach 2-3 molecules. Since interaction of muscle aldolase with muscle FBPase results in desensitisation of the latter toward AMP inhibition (Rakus & Dzugaj, 2000, Biochem. Biophys. Res. Commun. 275, 611-616), phosphorylation may be considered as a way of muscle FBPase activity regulation.  相似文献   

18.
A fructose diphosphate aldolase has been isolated from ascarid muscle and crystallized by simple column chromatography and an ammonium sulfate fractionation procedure. It was found to be homogeneous on electrophoresis and Sephadex G-200 gel filtration. This enzyme has a fructose diphosphate/fructose 1-phosphate activity ratio close to 40 and specific activity for fructose diphosphate cleavage close to 11. Km values of ascarid aldolase are 1 × 10−6m and 2 × 10−3m for fructose diphosphate and fructose 1-phosphate, respectively. The enzyme reveals a number of catalytic and molecular properties similar to those found for class I fructose diphosphate aldolases. It has C-terminal functional tyrosine residues, a molecular weight of 155,000, and is inactivated by NaBH4 in presence of substrate. Data show the presence of two types of subunits in ascarid aldolase; the subunits have different electrophoretic mobilities but similar molecular weights of 40,000. Immunological studies indicate that the antibody-binding sites of the molecules of the rabbit muscle aldolase A or rabbit liver aldolase B are structurally different from those of ascarid aldolase. Hybridization studies show the formation of one middle hybrid form from a binary mixture of the subunits of ascarid and rabbit muscle aldolases. Hybridization between rabbit liver aldolase and ascarid aldolase was not observed. The results indicate that ascarid aldolase is structurally more related to the mammalian aldolase A than to the aldolase B.  相似文献   

19.
The affinity label N-bromoacetylethanolamine phosphate (BrAcNHEtOP) has been used previously at pH 6.5 to identify His-359 of rabbit muscle aldolase as an active site residue. We now find that the specificity of the reagent is pH-dependent. At pH 8.5, alkylation with 14C-labeled BrAcNHEtOP abolishes both fructose-1,6-P2 cleavage activity and transaldolase activity. The stoichiometry of incorporation, the kinetics of inactivation, and the protection against inactivation afforded by a competitive inhibitor or dihydroxyacetone phosphate are consistent with the involvement of an active site residue. A comparison of 14C profiles obtained from chromatography on the amino acid analyzer of acid hydrolysates of inactivated and protected samples reveals that inactivation results from the alkylation of lysyl residues. The major peptide in tryptic digests of the inactivated enzyme has been isolated. Based on its amino acid composition and the known sequence of aldolase, Lys-146 is the residue preferentially alkylated by the reagent. Aldolase modified at His-359 is still subject to alkylation of lysine; thus Lys-146 and His-359 are not mutually exclusive sites. However, aldolase modified at Lys-146 is not subject to alkylation of histidine. One explanation of these observations is that modification of Lys-146 abolishes the binding capacity of aldolase for substrates and substrate analogs (BrAcNHEtOP), whereas modification of his-359 does not. Consistent with this explanation is the ability of aldolase modified at His-359 to form a Schiff base with substrate and the inability of aldolase modified at Lys-146 to do so. Therefore, Lys-146 could be one of the cationic groups that functions in electrostatic binding of the substrate's phosphate groups.  相似文献   

20.
Rabbit muscle aldolase was found to be inactivated in a slow, reversible manner by D-erythrulose 1-phosphate. This compound combined rapidly and reversibly with the enzyme to form an initial complex, which then only slowly (ki = 0.28 min-1) converted to a kinetically more stable form. This stable enzyme-ligand form was inactive toward the normal substrate of aldolase, fructose 1,6-bisphosphate. The inactive enzyme-ligand complex, however, could be decomposed (kr = 0.0041 min-1) to yield active enzyme once again by incubation in a solution devoid of D-erythrulose 1-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号