首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Butanol, at sub-growth-inhibitory levels, caused a ca. 20 to 30% increase in fluidity of lipid dispersions from Clostridium acetobutylicum. When grown in the presence of butanol or into stationary phase, C. acetobutylicum synthesized increased levels of saturated acyl chains at the expense of unsaturated chains.  相似文献   

2.
3.
The optimum conditions for autolysis of Clostridium acetobutylicum ATCC 824 were determined. Autolysis was optimal at pH 6.3 and 55 degrees C in 0.1 M-sodium acetate/phosphate buffer. The ability of cells to autolyse decreased sharply at the end of the exponential phase of growth. Lysis was stimulated by monovalent cations and compounds that complex divalent cations, and inhibited by divalent cations. The autolysin of C. acetobutylicum, which was mainly cytoplasmic, was purified to homogeneity and characterized as a muramidase. The enzyme was identical to the extracellular muramidase in terms of M(r), isoelectric point and NH2-terminal amino acid sequence. The autolysin was inhibited by lipoteichoic acids and cardiolipin but not by phosphatidylethanolamine and phosphatidylglycerol. A mechanism of regulation and fixation involving lipoteichoic acid, cardiolipin and divalent cations is proposed.  相似文献   

4.
Summary Release of autolysin during the late exponential growth phase of Clostridium acetobutylicum resulted in early lysis of the culture and reduction of solvent formation. A simple and effective way of reducing autolysin activity and increasing solvent production is partial inhibition of protein synthesis with chloramphenicol (CAP). The extracellular autolytic activity in the culture, determined by following loss of turbidity of washed clostridial cells in 0.04m sodium phosphate buffer at 37° C, was decreased by 40% after CAP treatment. This caused an extension of cell viability by 12 h and an increase in butanol production by 30%. The optimal time of CAP addition was 12 h of incubation, and the optimal antibiotic concentration was 120 g/ml. The effects of CAP on the fermentation are due to the inhibition of protein synthesis leading to a decrease in autolysin level in the culture. The results obtained provide economic advantages for industrial production of solvents by minimizing autolysin activity and maximizing solvent yield during the critical solvent-producing phase. Correspondence to: R. W. Traxler  相似文献   

5.
Two butanol dehydrogenases with different cofactor requirements and different pH ranges have been detected in Clostridium acetobutylicum ATCC 824. The NADH-dependent butanol dehydrogenase (NADH-BDH) was purified to near homogeneity and characterized. One striking feature of the enzyme is that Zn2+ was needed to obtain a significant recovery during purification. The enzyme was a dimer composed of two subunits with subunit molecular mass of 42 kDa and a native molecular mass of 82 +/- 2 kDa. The kinetics were studied in the direction of the reduction of butyraldehyde. Inhibition studies with S-NADH and butanol indicate that the NADH-BDH follows an ordered bibi mechanism with kinetic constants of 4.86 s-1, 0.18 mM, and 16 mM for Kcat, KNADH, and Kbutyraldehyde, respectively. Activity in the reverse direction was 50-fold lower than that in the forward direction. The NADH-BDH had higher activity with longer chained aldehydes and was inhibited by metabolites containing an adenine moiety.  相似文献   

6.
7.
In Clostridium acetobutylicum, conversion of butyraldehyde to butanol is enzymatically achieved by butanol dehydrogenase (BDH). A C. acetobutylicum gene that encodes this protein was identified by using an oligonucleotide designed on the basis of the N-terminal amino acid sequence of purified C. acetobutylicum NADH-dependent BDH. Enzyme assays of cell extracts of Escherichia coli harboring the clostridial gene demonstrated 15-fold-higher NADH-dependent BDH activity than untransformed E. coli, as well as an additional NADPH-dependent BDH activity. Kinetic, sequence, and isoelectric focusing analyses suggest that the cloned clostridial DNA contains two or more distinct C. acetobutylicum enzymes with BDH activity.  相似文献   

8.
This study elucidated the importance of two critical enzymes in the regulation of butanol production in Clostridium acetobutylicum ATCC 824. Overexpression of both the 6-phosphofructokinase (pfkA) and pyruvate kinase (pykA) genes increased intracellular concentrations of ATP and NADH and also resistance to butanol toxicity. Marked increases of butanol and ethanol production, but not acetone, were also observed in batch fermentation. The butanol and ethanol concentrations were 29.4 and 85.5 % higher, respectively, in the fermentation by double-overexpressed C. acetobutylicum ATCC 824/pfkA+pykA than the wild-type strain. Furthermore, when fed-batch fermentation using glucose was carried out, the butanol and total solvent (acetone, butanol, and ethanol) concentrations reached as high as 19.12 and 28.02 g/L, respectively. The reason for improved butanol formation was attributed to the enhanced NADH and ATP concentrations and increased tolerance to butanol in the double-overexpressed strain.  相似文献   

9.
Zhang Y  Han B  Ezeji TC 《New biotechnology》2012,29(3):345-351
The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol.  相似文献   

10.
Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adh(B-593)) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.  相似文献   

11.
Abstract Plasmid-containing strains of Clostridium acetobutylicum produced higher levels of solvents and lower levels of acids than wild-type cells in controlled pH 4.5 batch fermentations. This effect was observed regardless of whether or not the plasmids contained C. acetobutylicum genes. The effect was less prevalent in higher pH fermentations and apparently independent of the actual DNA sequences contained on these plasmids. The plasmid-containing strains were found to have lower growth-rates and higher solventogenic enzyme activities than wild-type cells. However, similar activity levels were found for both butyrate-pathway enzymes.  相似文献   

12.
Clostridium acetobutylicum ATCC 824 converts sugars and various polysaccharides into acids and solvents. This bacterium, however, is unable to utilize cellulosic substrates, since it is able to secrete very small amounts of cellulosomes. To promote the utilization of crystalline cellulose, the strategy we chose aims at producing heterologous minicellulosomes, containing two different cellulases bound to a miniscaffoldin, in C. acetobutylicum. A first step toward this goal describes the production of miniCipC1, a truncated form of CipC from Clostridium cellulolyticum, and the hybrid scaffoldin Scaf 3, which bears an additional cohesin domain derived from CipA from Clostridium thermocellum. Both proteins were correctly matured and secreted in the medium, and their various domains were found to be functional.  相似文献   

13.
The utilization of maltose by Clostridium acetobutylicum ATCC 824 was investigated. Glucose was used preferentially to maltose, when both substrates were present in the medium. Maltose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity was detected in extracts prepared from cultures grown on maltose, but not glucose or sucrose, as the sole carbon source. Extract fractionation and PTS reconstitution experiments revealed that the specificity for maltose is contained entirely within the membrane in this organism. A putative gene system for the maltose PTS was identified (from the C. acetobutylicum ATCC 824 genome sequence), encoding an enzyme IIMal and a maltose 6-phosphate hydrolase. Journal of Industrial Microbiology & Biotechnology (2001) 27, 298–306. Received 12 September 2000/ Accepted in revised form 30 November 2000  相似文献   

14.
A beta-d-xylosidase from C. acetobutylicum ATCC 824 was purified by column chromatography on CM-Sepharose, hydroxylapatite, Phenyl Sepharose, and Sephadex G-200. The enzyme had an apparent molecular weight of 224,000 as estimated by gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits of 85,000 and one subunit of 63,000 daltons. It exhibited optimal activity at pH 6.0 to 6.5 and 45 degrees C. the enzyme had an isoelectric point of 5.85. It hydrolyzed p-nitrophenylxyloside readily with a K(m) of 3.7 mM. The enzyme hydrolyzed xylo-oligosaccharides with chain lengths of 2 to 6 units by cleaving a single xylose from the chain end. It showed little or no activity against xylan, carboxymethyl cellulose, and other p-nitrophenylglycosides.  相似文献   

15.
Three sporulation-specific genes (orfA, sigE, sigG) from Clostridium acetobutylicum ATCC 824 are arranged in a cluster, encoding the putative σE-processing enzyme, σE, and σG respectively. When they were transformed into Clostridium acetobutylicum while on a plasmid functional in this organism, transformants did not survive. Three kinds of recombinations were then attempted with nonreplicative plasmids: duplication of orfA and sigE, replacement of all of the three genes, and inactivation of orfA. While the wild-type strain ceased to grow and produce solvents in batch cultures after approximately 24 h, mutant strains were isolated that showed sustained growth for a much longer time and produced a threefold increase in acetone and butanol in test tube cultures. In addition, one of the derived strains showed a significantly higher growth rate. Features of the restriction maps of the recombinants did not correlate with expected maps, indicating possible complications occurring during the recombination events.  相似文献   

16.
Cohesin and dockerin domains are critical assembling components of cellulosome, a large extracellular multienzyme complex which is used by anaerobic cellulolytic bacteria to efficiently degrade lignocellulose. According to sequence homology, cohesins can be divided into three major groups, whereas cohesins from Clostridium acetobutylicum are beyond these groups and emanate from a branching point between the type I and type III cohesins. Cohesins and dockerins from C. acetobutylicum show low sequence homology to those from other cellulolytic bacteria, and their interactions are specific in corresponding species. Therefore the interactions between cohesins and dockerins from C. acetobutylicum are meaningful to the studies of both cellulosome assembling mechanism and the construction of designer cellulosome. Here we report the NMR resonance assignments of one cohesin from cellulosome scaffoldin cipA and one dockerin from a cellulosomal glycoside hydrolase (family 9) of C. acetobutylicum for further structural determination and functional studies.  相似文献   

17.
18.
19.
20.
Phosphotransbutyrylase (phosphate butyryltransferase [EC 2.3.1.19]) from Clostridium acetobutylicum ATCC 824 was purified approximately 200-fold to homogeneity with a yield of 13%. Steps used in the purification procedure were fractional precipitation with (NH4)2SO4, Phenyl Sepharose CL-4B chromatography, DEAE-Sephacel chromatography, high-pressure liquid chromatography with an anion-exchange column, and high-pressure liquid chromatography with a hydrophobic-interaction column. Gel filtration and denaturing gel electrophoresis data were consistent with a native enzyme having eight 31,000-molecular-weight subunits. Within the physiological range of pH 5.5 to 7, the enzyme was very sensitive to pH change in the butyryl phosphate-forming direction and showed virtually no activity below pH 6. This finding indicates that a change in internal pH may be one important factor in the regulation of the enzyme. The enzyme was less sensitive to pH change in the reverse direction. The enzyme could use a number of substrates in addition to butyryl coenzyme A (butyryl-CoA) but had the highest relative activity with butyryl-CoA, isovaleryl-CoA, and valeryl-CoA. The Km values at 30 degrees C and pH 8.0 for butyryl-CoA, phosphate, butyryl phosphate, and CoASH (reduced form of CoA) were 0.11, 14, 0.26, and 0.077 mM, respectively. Results of product inhibition studies were consistent with a random Bi Bi binding mechanism in which phosphate binds at more than one site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号