首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular strategies of plant defense and insect counter-defense   总被引:13,自引:0,他引:13  
The prediction of human population growth worldwide indicates there will be a need to substantially increase food production in order to meet the demand on food supply.This can be achieved in part by the effective management of insect pests. Since plants have co-evolved with herbivorous insects for millions of years, they have developed an array of defense genes to protect themselves against a wide variety of chewing and sucking insects.Using these naturally-occurring genes via genetic engineering represents an environmentally friendly insect pest-control measure. Insects, however, have been actively evolving adaptive mechanisms to evade natural plant defenses. Such evolved adaptability undoubtedly has helped insects during the last century to rapidly overcome a great many humanimposed management practices and agents, including chemical insecticides and genetically engineered plants. Thus, better understanding of the molecular and genetic basis of plant defense and insect counter-defense mechanisms is imperative, not only from a basic science perspective, but also for biotechnology-based pest control practice. In this review, we emphasize the recent advance and understanding of molecular strategies of attack-counterattack and defense-counter-defense between plants and their herbivores.  相似文献   

2.
Forests have long been recognized as excellent model systems for studying insect ecology. The fact that many forests' ecosystems still function in a semi-natural state, with little influence from human disturbance, provides unique opportunities for understanding co-evolved community and population processes. Unfortunately the structural complexity of forests and the sheer size of trees often pose formidable problems when attempting to sample insects in forests. As such, any scientist embarking on a study of forest insect ecology would be well-advised to carefullv plan their sampling efforts.  相似文献   

3.
Nucleopolyhedrovirus (NPV) has become an integral part of integrated pest management (IPM) in many Australian agricultural and horticultural crops. This is the culmination of years of work conducted by researchers at the Queensland Department of Primary Industries and Fisheries (QDPI&F) and Ag Biotech Australia Pty Ltd. In the early 1970’s researchers at QDPI&F identified and isolated a virus in Helicoverpa armigera populations in the field. This NPV was extensively studied and shown to be highly specific to Helicoverpa and Heliothis species. Further work showed that when used appropriately the virus could be used effectively to manage these insects in crops such as sorghum, cotton, chickpea and sweet corn. A similar virus was first commercially produced in the USA in the 1970’s. This product, Elcar?, was introduced into Australia in the late 1970’s by Shell Chemicals with limited success. A major factor contributing to the poor adoption of Elcar was the concurrent enormous success of the synthetic pyrethroids. The importance of integrated pest management was probably also not widely accepted at that time. Gradual development of insect resistance to synthetic pyrethroids and other synthetic insecticides in Australia and the increased awareness of the importance of IPM meant that researchers once again turned their attentions to environmentally friendly pest management tools such NPV and beneficial insects. In the 1990’s a company called Rhone-Poulenc registered an NPV for use in Australian sorghum, chickpea and cotton. This product, Gemstar?, was imported from the USA. In 2000 Ag Biotech Australia established an in-vivo production facility in Australia to produce commercial volumes of a product similar to the imported product. This product was branded, ViVUS?, and was first registered and sold commercially in Australia in 2003. The initial production of ViVUS used a virus identical to the American product but replicating it in an Australian Helicoverpa species, H. armigera. Subsequent research collaboration between QDPI&F and Ag Biotech reinvigorated interest in the local virus strain. This was purified and the production system adapted to produce it on a commercial scale. This new version of ViVUS, which was branded ViVUS Gold?, was first registered and sold commercially in 2004. Widespread insect resistance to insecticides and a greater understanding of integrated pest management is leading to increased adoption of technologies such NPV in Australian agriculture.  相似文献   

4.
The paradigm, still around in textbooks, that 'in insects sex is strictly genetic, thus that they do not have sex hormones', is mainly based on a wrong interpretation of the 'gynandromorph argument'. It is no longer tenable. Given the fact that vertebrates and invertebrates probably had a common, sexually reproducing ancestor, there is no reason to assume that only vertebrates need sex hormones. The major function of sex hormones is to inform the somatoplasm about developmental changes that take place in the gonads. In contrast to juvenile hormone and neuropeptides, ecdysteroids meet all criteria to act as sex hormones, which was probably their ancient role. Their much better documented role in moulting and metamorphosis was a secondary acquisition that enabled arthropods to cope with growth problems, imposed by a rigid cuticle. Female insects use 20-hydroxyecdysone (20E), secreted by the follicle cells of the ovary, in a similar way as females of egg-laying vertebrates use estrogens. For a variety of reasons, the possibility that ecdysteroids, in particular ecdysone (E), might also act as sex hormones in male insects, thus as the counterpart of testosterone of vertebrates, has been very much overlooked. Thanks to the recent discovery of the molecular basis of the haploid-diploid system of sex determination in the honeybee, the characterization of Halloween genes, proteomics, RNAi and so on, it now becomes possible to verify whether in insects, as with vertebrates, males are the endocrinologically default gender form.  相似文献   

5.
Plants can accumulate, constitutively and/or after induction, a wide variety of defense compounds in their tissues that confer resistance to herbivorous insects. The naturally occurring plant resistance gene pool can serve as an arsenal in pest management via transgenic approaches. As insect-plant interaction research rapidly advances, it has gradually become clear that the effects of plant defense compounds are determined not only by their toxicity toward target sites, but also by how insects respond to the challenge. Insect digestive tracts are not passive targets of plant defense, but often can adapt to dietary challenge and successfully deal with various plant toxins and anti-metabolites. This adaptive response has posed an obstacle to biotechnology-based pest control approaches, which underscores the importance of understanding insect adaptive mechanisms. Molecular studies on the impact of protease inhibitors on insect digestion have contributed significantly to our understanding of insect adaptation to plant defense. This review will focus on exposing how the insect responds to protease inhibitors by both qualitative and quantitative remodeling of their digestive proteases using the cowpea bruchid-soybean cysteine protease inhibitor N system.  相似文献   

6.
Iron is essential to life,but surprisingly little is known about how iron is managed in nonvertebrate animals.In mammals,the well-characterized transferrins bind iron and are involved in iron transport or immunity,whereas other members of the transferrin family do not have a role in iron homeostasis.In insects,the functions of transferrins are still poorly understood.The goals of this project were to identify the transferrin genes in a diverse set of insect species,resolve the evolutionary relationships among these genes,and predict which of the transferrins are likely to have a role in iron homeostasis.Our phylogenetic analysis of transferrins from 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insect transferrins.Our analysis suggests that transferrin 2 arose prior to the origin of insects,and transferrins/,i,and 4 arose early in insect evolution.Primary sequence analysis of each of the insect transferrins was used to predict signal peptides,carboxyl-terminal transmembrane regions,GPI-anchors,and iron binding.Based on this analysis,we suggest that transferrins 2,and 4 are unlikely to play a major role in iron homeostasis.In contrast,the transferrin 1 orthologs are predicted to be secreted,soluble,iron-binding proteins.We conclude that transferrin 1 orthologs are the most likely to play an important role in iron homeostasis.Interestingly,it appears that the louse,aphid,and thrips lineages have lost the transferrin 1 gene and,thus,have evolved to manage iron without transferrins.  相似文献   

7.
In recent decades, the take-off mechanisms of flying animals have received much attention in insect flight initiation. Most of previous works have focused on the jumping mechanism, which is the most common take-off mechanism found in flying animals. Here, we presented that the rhinoceros beetle, Trypoxylus dichotomus, takes offwithout jumping. In this study, we used 3-Dimensional (3D) high-speed video techniques to quantitatively analyze the wings and body kinematics during the initiation periods of flight. The details of the flapping angle, angle of attack of the wings and the roll, pitch and yaw angles of the body were investigated to understand the mechanism of take-off in T. dichotomus. The beetle took off gradually with a small velocity and small acceleration. The body kinematic analyses showed that the beetle exhibited stable take-off. To generate high lift force, the beetle modulated its hind wing to control the angle of attack; the angle of attack was large during the upstroke and small during the downstroke. The legs of beetle did not contract and strongly release like other insects. The hind wing could be con- sidered as a main source of lift for heavy beetle.  相似文献   

8.
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on thecoloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investigated the micro-scale andnano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancingthe hydrophobicity.After examining 10 orders and 24 species of flying Pterygotan insects,we found that micro-scaleand nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects.The tiny structures such asdenticle or setae on the insect wings enhance the hydrophobicity,thereby enabling the wings to be cleaned more easily.And thehydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20.In order to examinethe wetting characteristics on a rough surface,a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer,which exhibits the same behavior as the insect wing,with the Cassie-Wenzel transition occurring consistently around apitch/width value of 20.  相似文献   

9.
Ion-exchange Polymer Metal Composites (IPMC) are a new class of intelligent material that can be used effectively as actuators and artificial muscles. IPMC was fabricated and its displacement and force characteristics were investigated with respect to voltage, frequency and waveform of the controlling signal. A square waveform input generated slightly larger displacement and force than sinusoidal or triangular waveform. When the voltage was increased and the frequency was decreased, displacement and force were both increased. However, although the bending deformation of IPMC was large, the output force was much lower than we expected. Improvement of the force output is key and is the main obstacle to be overcome in order to make IPMC of practical use.  相似文献   

10.
Wolbachia symbiosis and insect immune response   总被引:1,自引:0,他引:1  
Bacterial intraceUular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a Gram-negative obligatory intracellular and maternally transmitted a-proteobacterium, that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera, Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70% of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system.  相似文献   

11.
Unpredictable air movements have proved to be a problem in previous studies investigating robot communication bymeans of airborne pheromone chemicals. The project described in this paper investigates the use of air vortex rings as a means ofcarrying pheromone chemicals between transmitting and receiving robots. Sensitivity to chemicals including pheromonesreleased by conspecifics is essential for many aspects of an insect’s life. They assist in finding food, locating a mate, avoidingdanger and help coordinate the activities of social insects. In the future, autonomous robots will be challenged by many situationssimilar to those that face insects and other simple creatures. Chemical communication may prove useful for these robots aswell. This paper describes the equipment developed for generating and detecting vortex rings. Results of experiments involvinglocation and tracking of a sequence of pheromone vortex rings are also presented.  相似文献   

12.
Insects are a group of arthropods and the largest group of animals on Earth,with over one million species described to date.Like other life forms,insects suffer from viruses that cause disease and death.Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture.In contrast,viruses that are pathogenic to insect pests can be exploited as attractive biological control agents.All of these factors have led to an explosion in the amount of research into insect viruses in recent years,generating impressive quantities of information on the molecular and cellular biology of these viruses.Due to the wide variety of insect viruses,a better understanding of these viruses will expand our overall knowledge of their virology.Here,we review studies of several newly discovered RNA insect viruses in China.  相似文献   

13.
Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,whereNafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify the equivalent beamand equivalent bimorph beam models.The blocking force and tip displacement of the IPMC actuator were measured with a DCpower supply and Young’s modulus of the IPMC strip was measured by bending and tensile tests respectively.The calculatedmaximum tip displacement and the Young’s modulus by the equivalent beam model were almost identical to the correspondingmeasured data.Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model tonumerically reproduce the force-displacement relationship of the IPMC actuator.The results by the equivalent bimorph beammodel agreed well with the force-displacement relationship acquired by the measured data.It is confirmed that the equivalentbeam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement,blockingforce and Young’s modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.  相似文献   

14.
The many ways parasites can impact their host species have been the focus of intense study using a range of approaches. A particularly promising but under-used method in this context is experimental evolution, because it allows targeted manipulation of known populations exposed to contrasting conditions. The strong potential of applying this method to the study of insect hosts and their associated parasites is demonstrated by the few available long-term experiments where insects have been exposed to parasites. In this review, we summarize these studies, which have delivered valuable insights into the evolution of resistance in response to parasite pressure, the underlying mechanisms, as well as correlated genetic responses. We further assess findings from relevant artificial selection studies in the interrelated contexts of immunity, life history, and reproduction. In addition, we discuss a number of well-studied Tribolium castaneum-Nosema whitei coevolution experiments in more detail and provide suggestions for research. Specifically, we suggest that future experiments should also be performed using nonmodel hosts and should incorporate contrasting experimental conditions, such as population sizes or envi- ronments. Finally, we expect that adding a third partner, for example, a second parasite or symbiont, to a host-parasite system could strongly impact (co)evolutionary dynamics.  相似文献   

15.
Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess finetuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modem genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precur sor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mam malian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects.  相似文献   

16.
Ribosomal protein S 13 gene has been cloned and analyzed in many organisms,but there are few documents relating to insects. In this communication, the full-length cDNA sequence of ribosomal protein S 13 gene in the diamondback moth, Plutella xylostella(Lepidoptera: Plutellidae), was determined by using PCR amplification technique. The features of the ribosomal protein S 13 gene sequence were analyzed and the deduced amino acids sequence was compared with those from other insects. The results of multi-alignment of the amino acid sequences between the diamondback moth and other insect species revealed that this gene sequence is highly conserved in insects. Based on maximum likelihood method, a phylogenetic tree was constructed from 10 different species using PHYLIP software. It showed that nematode is one separate lineage and the five insect speciesbe long to another lineage, whereas those species higher than insects form the third one. The pattern of this phylogenetic tree evidently represented the evolution of different species.  相似文献   

17.
18.
Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study CrylA binding proteins. Sample preparation is important in two- dimensional electrophoresis (2-DE), so to determine a suitable BBMV preparation method in Helicoverpa armigera for 2-DE, we compared three published BBMV preparation methods mostly used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE). All methods yielded similar types and numbers of binding proteins, but in different quantities. The Abdul-Rauf and Ellar protocol was the best of the three, but had limitations. Sufficient protein quantity is important for research involving limited numbers of insects, such as studies of insect resistance to Bacillus thuringiensis in the field. Consequently, we integrated the three BBMV isolation methods into a single protocol that yielded high quantities of BBMV proteins from H. armigera larval midguts, which proved suitable for 2- DE analysis.  相似文献   

19.
异型雄蕊植物花内雄蕊的分化   总被引:1,自引:0,他引:1  
Flowers that have heteromorphic stamens (heterantherous flowers) have intrigued many researchers ever since the phenomenon was discovered in the 19th century. The morphological differentiation in androecia has been suggested as a reflection of "labor division" in pollination in which one type of stamens attracts pollinators and satisfies their demand for pollen as food and the other satisfies the plant's need for safe gamete dispersal. The extent and patterns of stamen differentiation differ notably among taxa with heterantherous flowers. Seven species with heteromorphic stamens in three genera were sampled from Leguminosae and Melastomataceae, and the morphological difference of androecia, pollen content, pollen histochemistry and viability, pollen micro- morphology, as well as the main pollinators were examined and compared. Pollen number differs significantly between stamen sets of the same flower in most species investigated, and a correlation of pollen number and anther size was substantiated. Higher pollen viabilities were found in the long (pollinating) stamens of Senna alata (L.) Roxb. and S. bicapsularis (L.) Roxb. Dimorphic pollen exine ornamentation is reported here for the first time in Fordiophytonfaberi Stapf. The height of stigma and anther tips of the long stamens in natural conditions was proved to be highly correlated, supporting the hypothesis that they contact similar areas of the pollinator's body.  相似文献   

20.
Sexual deception involves the mimicry of another species' sexual signals in order to exploit behavioural routines linked to those signals. Known sexually deceptive systems use visual, acoustic or olfactory mimicry to exploit insects for preda- tion, cleptoparasitism and pollination. It is predicted that where sexual deception inflicts a cost on the receiver, a coevolutionary arms race could result in the evolution of discriminating receivers and increasingly refined mimicry. We constructed a conceptual model to understand the importance of trade-offs in the coevolution of sexually deceptive mimic and receiver. Four components examined were: the cost of mimicry, the cost to receiver for being fooled, the density of mimics and the relative magnitude of a mimicry-independent component of fitness. The model predicts that the exploitation of non-discriminating receivers by accurate signal mimicry will evolve as an evolutionary stable strategy under a wide range of the parameter space explored. This is due to the difficulty in minimising the costs of being fooled without incurring the cost of falsely rejecting real mating opportunities. In the model, the evolution of deception is impeded when mimicry imposes substantial costs for both sides of the arms race. Olfac- tory signals that are potentially cheap to produce are therefore likely to be more vulnerable to exploitation than expensive visual ornaments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号