首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本实验用微管的PAP免疫酶细胞化学方法,研究了培养的小儿包皮成纤维细胞及其分离的中心体在taxol的作用下对微管组装的影响。实验结果表明taxol对低温(4℃)和微管解聚药物的处理具有拮抗作用,它阻止微管解聚,对微管具有稳定作用,并观察到taxol可降低中心体对微管组装所需的管蛋白临界浓度,增强中心体对微管的组装能力。Taxol对细胞内微管的影响,主要表现在促使微管呈束状浓集化,并随处理时间的延长,这种浓集化表现愈益明显,导致破坏胞质CMTC的正常分布。由于taxol能使微管浓集化,抑制其解聚,使得细胞从G_2期进入M期后,微管不解聚,从而不能形成正常的纺锤体,胞质不分裂,最后导致细胞微核化。用秋水仙酰胺处理后再加taxol时,我们观察到细胞CMTC与正常未经处理的细胞CMTC比较,呈相反的分布现象,这可能与秋水仙酰胺促使中心体与细胞核分离和taxol增强中心体对微管的组装有关。  相似文献   

2.
中心粒是由九组三联体微管组成的圆筒状细胞器,主要存在于动物细胞中。中心粒在细胞中主要行使两大功能:一方面,中心粒是中心体的核心,而中心体是哺乳动物细胞的微管组织中心,在有丝分裂问期参与细胞迁移、胞内运输和形态维持等,而在有丝分裂期则作为纺锤体的极点参与纺锤体的形成,参与细胞分裂和遗传物质的分配;另一方面,细胞进入G0/G1期后,  相似文献   

3.
中心体作为细胞微管组织中心,对于细胞的生理活动具有重要的调控作用.在G2期末和有丝分裂期开始阶段,复制之后的中心体需要向细胞核两端运动,到达形成双极纺锤体的位置.这一过程受到微管和微丝两个骨架系统的调控.在相关动力蛋白的驱动下,两种骨架相互配合,共同完成中心体的分离过程,从而保证细胞顺利进入有丝分裂期.本文分析和比较了两种骨架蛋门对下中心体分离过程中所发挥的作用.  相似文献   

4.
用间接免疫荧光法以小鼠腹水癌细胞为底物从硬皮病病人的自家抗血清中筛选出几个抗中心体的抗血清。因为中心体是化学构分复杂的细胞结构,而自家抗体又是多克隆的,故本文只用其中一个抗中心体抗血清作进一步研究。为了定位其抗原,同时也采用了L929培养细胞为底物。发现这抗血清结合于微管,有丝分裂期的纺锤体,中心体以及其它一些核结构。同时也用此抗血清在细胞裂解液的免疫印迹膜上检出了分子时与微管蛋白相同的主要条带,  相似文献   

5.
中心体是一种重要的细胞器,约由100多种蛋白质所组成,结构上包括中心粒和中心体基质。作为细胞的微管组织中心,决定着细胞微管的极性、数目及分布。中心体通过它对细胞骨架的作用而操纵着细胞的形状、极性和运动以及细胞内物质的运输,在细胞分裂过程中形成确保染色体均匀分配给子细胞的纺锤体。  相似文献   

6.
中心体位于真核细胞核周,是细胞的微管组织中心。中心体参与细胞诸多生理过程,维持其稳态对防止多种人类疾病的发生具有重要意义。除在细胞分裂、细胞运动和细胞极性中发挥作用外,中心体亦参与机体免疫应答和多种炎症性疾病过程。本文拟就中心体在免疫细胞功能与相关疾病中的主要功能和信号通路做一综述,为进一步探究其免疫效应及调节机制提供参考。  相似文献   

7.
用间接免疫荧光法以小鼠腹水癌细胞为底物从硬皮病病人的自家抗血清中筛选出几个抗中心体的抗血清。因为中心体是化学构分复杂的细胞结构,而自家抗体又是多克隆的,故本文只用其中一个抗中心体抗血清作进一步研究。为了定位其抗原,同时也采用了L 929培养细胞为底物。发现这抗血清结合于微管,有丝分裂期的纺锤体,中心体以及其它一些核结构。同时也用此抗血清在细胞裂解液的免疫印迹膜上检出了分子量与微管蛋白相同的主要条带,此外还有几条较不明显的条带;后者肯定了间接免疫荧光的观察结果。  相似文献   

8.
周璐珈  陈洵 《生命的化学》2006,26(3):221-223
纺锤体极体作为酵母细胞的微管组织中心,在功能上等同于高等真核细胞的中心体,它在细胞周期中的准确复制是两极纺锤体组装和染色体正确分离的前提。纺锤体极体复制缺陷会导致异倍体和多倍体的形成,造成染色体不稳定性的发生。以酿酒酵母细胞为模型,研究纺锤体极体复制过程相关蛋白质的突变,有助于揭示酵母细胞中染色体不稳定性发生的分子机制,并为动物细胞中心体复制的研究提供良好的借鉴。  相似文献   

9.
在动物细胞中,中心体是最主要的微管组织中心,对细胞运动和极性、纤毛生长以及细胞分裂都具有重要作用。该文总结了中心体的结构组成、组装过程,并具体阐述了中心体关键结构的组装等方面的研究进展,为更深入地了解中心体组装的过程及调控机制提供参考。  相似文献   

10.
微管是真核细胞的骨架系统之一,它对于支持细胞形态、参与细胞的各种运动、细胞内大分子物质的运输及细胞器的位移有重要作用。微管还是构成动物细胞中心体、纤毛和鞭毛、有丝分裂纺锤体等结构的主要元件。微管是中空的圆柱状结构,直径(外径)约25nm。组成微管的主要化学成分是球状的a-和B-微管蛋白,分子量大约均为55kD。在体外,球状的a-、B-微管蛋白聚合成圆柱状微管已有比较明确的实验模式[1],在离体实验中,有足够的a-和B-微管蛋白及适量的GTP和Mg2+。在37°C、pH6.8的条件下,微管蛋白能自…  相似文献   

11.
动物细胞中主要作为微管组织中心的中心体在细胞分裂时确保了染色体平均分配到两个子细胞的过程,从而保证了基因组的稳定性。中心体的结构或功能异常都将不可避免的引起基因组不稳定,从而导致肿瘤的发生。鉴于主要由中心体异常引起的染色体不稳定是肿瘤细胞的一个典型特征,而染色体不稳定又与肿瘤细胞的耐药性有着密切联系,因而不难想象以中心体为靶点的肿瘤治疗的合理性。因此,本文将着重阐述中心体在细胞调控,特别是与肿瘤发生密切相关的细胞活动及药物耐受中的重要作用,以期为更好阐明药物耐受机制,并为与中心体相关的抗肿瘤药物研发提供新思路。  相似文献   

12.
胡金朝 《西北植物学报》2012,32(8):1573-1578
分别用考马斯亮蓝染色和间接免疫荧光标记,并运用荧光倒置显微镜和激光共聚焦显微镜,对慈姑根尖固定后酶解获得的去壁细胞和细胞团块以及根尖细胞分裂周期中微管骨架列阵进行详细观察,以探索高等植物微管周期的普遍性。结果表明:慈姑根尖固定后酶解可获得大量结构完整的去壁细胞与细胞团块;考马斯亮蓝染色观察可见,慈姑根尖细胞中丰富的蛋白物质以及处于不同分裂期的细胞核染色体;免疫荧光观察可见,慈姑根尖细胞周期中微管骨架保存较好,主要有周质微管、早前期带微管、纺缍体微管和成膜体微管4种循序变化的排列方式,构成了高等水生植物分裂细胞中典型的微管周期。实验结果证明,高等水生植物与陆生植物微管周期具有相似性,为植物微管周期概念提供了新的实例。  相似文献   

13.
中心体是动物细胞有丝分裂期微管组织中心,对于细胞有丝分裂期形成纺锤体、正常分裂及染色体精确分离至关重要. 中心体失调控常造成遗传物质错误分配,最终诱发肿瘤形成.因此,对中心体结构及数量的精密调控将对细胞命运起着决定 作用.目前发现,中心体至少包含100多种调节蛋白,这些蛋白在细胞内的功能各异.最近很多研究显示,多种DNA损伤修复及 应答通路的激酶或磷酸酶定位于中心体,并且参与中心体调控.本文将对中心体结构、中心体复制、中心体分离、中心体扩 增、DNA损伤与中心体异常及DNA损伤反应性蛋白在中心体调控中的功能作一综述.  相似文献   

14.
采用透射电镜技术和免疫荧光标记技术对水蕨精子发生的超微结构以及中心体蛋白和微管蛋白在精子发生过程中的动态表达进行了观察。研究发现:(1)生毛体分化早期周围有放射状微管分布,这与线粒体向生毛体的聚集有关。(2)免疫荧光观察表明,中心体蛋白仅定位于生毛体、基体和鞭毛带上,自生毛体至基体阶段呈现明亮的荧光标记,在核塑形、鞭毛形成至精子成熟阶段,中心体蛋白荧光标记随着鞭毛的发生而逐渐减弱,至游动精子阶段中心体蛋白荧光标记信号几乎消失。(3)微管蛋白早期荧光标记与中心体蛋白标记形相同,在生毛体、鞭毛带、基体等运动细胞器上呈现明亮荧光标记,但微管蛋白随着鞭毛的发生其荧光标记越来越强。从二者的时空表达特征可以推断,中心体蛋白主要是运动细胞器的组织者,而非这些运动细胞器的结构成分,其功能是参与或负责中心粒、基体和鞭毛的发生。  相似文献   

15.
水稻胚囊发育过程中微管的变化   总被引:3,自引:1,他引:2  
对水稻(Oryza sativa L.)胚囊发育过程中微管变化的研究表明,微管在胚囊发育的不同阶段变化多样。在大孢子母细胞阶段微管分布主要呈辐射状,部分纵向排列。二分体和功能大孢子具类似的微管分布,而在单核胚囊微管主要是随机分布,部分呈辐射状。两核和四核胚囊的微管组成和分布非常相似,主要分布于细胞核周围。而八核胚囊的微管分布较为复杂,胚囊中的细胞做管分布各异,在卵细胞中呈随机分布,在助细胞中大多数呈纵向分布,而在中央细胞中呈横向分布,微管在反足细胞中非常分散,细胞质中有少量纵向排列的微管。  相似文献   

16.
绿豆根尖细胞微管骨架有丝分裂时相发育变化的研究   总被引:4,自引:0,他引:4  
提纯猪脑微管蛋白,制备兔抗微管蛋白抗血清,以此抗体与羊抗兔lgG-FITC因清,对绿豆根尖细胞进行间接免疫荧光标记和荧光显微镜检,得到了绿豆根尖细胞有丝分裂微管骨架周期发育变化的时相,如:早前期带,纺棰体微管,成膜体微管等,结果证明了双子叶植物具有与单子叶植物相似的细胞分裂微管周期时相,表明了微管架周期时相变化在高等植物中具有普遍性和共同变化的规律,讨论了微管骨架时相发育变化与染色有丝分裂行为的关  相似文献   

17.
中心体是动物细胞内最主要的微管组织中心。此外,它还参与纺锤体组装、纤毛发生和细胞迁移等一系列生物过程。中心体异常不仅与肿瘤的发生密切相关,并且还会导致一些发育方面的疾病。该文总结了中心体的结构、复制过程及其调控机制等方面的研究进展,并讨论了中心体异常与肿瘤发生及发育相关疾病的关系,为更深入了解产生中心体异常的原因及一些相关疾病的诊断和治疗提供参考。  相似文献   

18.
纺锤体极体(spindle pole body,SPB)是酵母细胞的微管组织中心,它在细胞分裂及细胞遗传稳定性的维持过程中起着极其重要的作用,是细胞生物学领域热门的研究方向.Sfi1p是酿酒酵母SPB的必需蛋白并且横跨整个半桥,该蛋白与SPB的复制有关,它的缺失或突变会导致SPB复制失败,在哺乳动物的中心体也存在酵母Sfi1p的同源蛋白.本文系统的介绍了酵母Sfi1p及其在人类中心体中的同源蛋白hSfi1p的结构特征,并且阐明了Sfi1p在SPB复制与分离、核配及生孢等细胞周期过程中的作用.对Sfi1p的功能研究,将有助于解决SPB研究过程中重要的科学问题,同时为中心体中Sfi1p同源蛋白的功能研究提供良好的借鉴.  相似文献   

19.
中心体是动物和低等植物中构成有丝分裂器的重要结构和功能元件,是间期细胞质微管和分裂期纺锤体微管的组织中心。本文报道一种从蛙精子中分离中心体的简便方法:通过匀浆将精子尾部与头部脱离,用蔗糖离心去除脱落的尾部和杂质颗粒,从而得到纯化的精子头部。用含EGTA的低渗液使精核膨大,再以超声破碎,离心得到中心体的粗制品,以重复超声和离心去除染色质和中心体外围的线粒体,得到纯度较高的精子中心体。电镜观察和免疫荧光染色显示分离所得的中心体由一对中心粒和其外周物质组成。  相似文献   

20.
中心体是一个非膜包被的半保留细胞器,由一对相互垂直的圆柱形中心粒及其周围大量的高电子密度的蛋白质-中心体基质(pericentriolar material,PCM)组成.在所有哺乳动物细胞中,中心体(centrosome)作为主要的微管组织中心(microtubule organizing centers,MTOCs),起到组装和稳定微管的关键功能.在大多数哺乳动物精子形成过程中,精子保留了近端中心粒,失去了大部分的中心体旁蛋白和远端中心粒,而在卵母细胞形成过程中两个中心粒被逐渐降解,主要的中心体旁蛋白被保留了下来,弥散于卵胞质中.受精后,在卵母细胞中精子中心粒被进一步降解,来源于卵母细胞和精子的中心体旁蛋白形成受精卵的MTOCs在胚胎分裂过程中行使功能.但在小鼠等啮齿类动物精子形成过程中,两个中心粒全部被降解,因此受精卵中的MTOCs主要由来源于卵母细胞中心体旁蛋白组成.在大多数哺乳动物核移植胚胎中.外源中心粒在胚胎1-细胞期即被降解,而是来源于供体细胞和受体卵母细胞的中心体旁蛋白形成重构胚的MTOCs指导纺锤体形成,中心粒是在囊胚期才从头合成的.在灵长类中,来源于精子的中心粒能与PCM一起组成典型的中心体在胚胎分裂过程中行使功能,但在其核移植胚胎中,体细胞中心体和去核卵母细胞中剩余的中心体旁蛋白不能有效的组装形成功能性中心体,这可能是灵长类哺乳动物体细胞克隆失败的一个关键原因. 成过程中,两个中心粒全部被降解,因此受精卵中的MTOCs主要由来源于卵母细胞中心体旁蛋白组成.在大多数哺乳动物核移植胚胎中.外源中心粒在胚胎1-细胞期即被降解,而是来源于供体细胞和受体卵母细胞的中心体旁蛋白形成重构胚的MTOCs指导纺锤体形成,中心粒是在囊胚期才从头合成的.在灵长类中,来源于精子的中心粒能与PCM一起组成典型的中心 在胚胎分裂过程中行使功能,但在其核移植胚胎中,体细胞中心体和去核卵母细胞中剩余的中心体旁蛋白不能有效的组装形成功能性中心体,这可能是灵长类哺乳动物体细胞克隆失败的一个关键原因. 成过程中,两个中心粒全部被降解,因此受精卵中的MTOCs主要由来源于卵母细胞中心体旁蛋白组成.在大多数哺乳动物核移植胚胎中.外源中心粒在胚胎1-细胞期即被降解,而是来源于供体细胞和受体卵母细胞的中心体旁蛋白形成重构胚的MTOCs指导纺锤体形成,中心粒是在囊胚期才从头合成的.在灵长类中,来源于精子的中心粒能与PCM一起组成典型的中心 在胚胎分裂过程中行使功能,但在其核移植胚胎中,体细胞中心体和去核卵母细胞中剩余的中心体旁蛋白不能有效的组  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号